
UCRL-TH-229287

Determining Application
Runtimes Using Queueing
Network Modeling

M.L. Elliott

March 22, 2007

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

 This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Meeting the Deadline

Determining Application Runtimes
Using Queueing Network Modeling

A thesis presented to the
Faculty of the Computer Science Department,

University of San Francisco,
in partial fulfillment of the requirements for the

Degree of Master of Science in Computer Science

By
Michael L. Elliott

December 14, 2006

UCRL-TH-229287

This research supported in part by UC/LLNL subcontract #B546340.
Portions of this work were performed under the auspices of the U.S. Department
of Energy by the University of California Lawrence Livermore National Laboratory

under contract No. W-7405-Eng-48.

Thesis Approval

This thesis, written by:

Michael L. Elliott

B.S. Electronics Engineering Technology, DeVry University, Kansas City, MO, 2002
B.A. Philosophy, University of Missouri, Columbia, 1997

under the guidance of the Thesis Advisory Committee, and approved by all its members,
has been presented to and accepted by the Dean of the College of Arts and Sciences, in
partial fulfillment of the requirements for the degree of:

Master of Science
In

Computer Science

 Jennifer Turpin, Ph.D. Date
 Dean
 College of Arts and Sciences, USF

 Thesis Committee:

 Jeff T. Buckwalter, Ph.D. Date
 Associate Professor and Committee Chair
 Department of Computer Science, USF

 David J. Galles, Ph.D. Date
 Associate Professor
 Department of Computer Science, USF

 Dr. rer. nat. Martin Schulz Date
 Computer Scientist
 CASC, Lawrence Livermore Nat’l Lab.

 i

Vita Auctoris

Name: Michael L. Elliott
Date of Birth: August 26, 1972

High School: Jefferson City Senior High School, Jefferson City, MO
Graduated: June, 1990

Baccalaureate School: University of Missouri – Columbia
Degree Awarded: B.A. in Philosophy, December, 1997

Baccalaureate School: DeVry University – Kansas City, Missouri
Degree Awarded: B.S. in Electronics Engineering Tech., February, 2002

 ii

Acknowledgements and Dedications
My thanks to the faculty and staff of the University of San Francisco and Lawrence

Livermore National Laboratory, without whom this research could not have been
conducted.

I would also like to thank the other students involved in this project for picking up the
slack when I had to focus my time elsewhere.

Special thanks to the members of my thesis committee, who have read countless
revisions of this thesis, and provided invaluable feedback and support.

Very special thanks and my eternal gratitude to my committee chair and mentor, Dr.
Jeff Buckwalter, whose belief in me allowed me to excel to new heights.

Finally, I dedicate this thesis to my grandmother, parents, and partner. Without their
support, sacrifices, and faith in me, I would not be where I am today.

 iii

Abstract

Determination of application times-to-solution for large-scale clustered computers

continues to be a difficult problem in high-end computing, which will only become more

challenging as multi-core consumer machines become more prevalent in the market.

Both researchers and consumers of these multi-core systems desire reasonable estimates

of how long their programs will take to run (time-to-solution, or TTS), and how many

resources will be consumed in the execution. Currently there are few methods of

determining these values, and those that do exist are either overly simplistic in their

assumptions or require great amounts of effort to parameterize and understand. One

previously untried method is queueing network modeling (QNM), which is easy to

parameterize and solve, and produces results that typically fall within 10 to 30% of the

actual TTS for our test cases. Using characteristics of the computer network (bandwidth,

latency) and communication patterns (number of messages, message length, time spent in

communication), the QNM model of the NAS-PB CG application was applied to MCR

and ALC, supercomputers at LLNL, and the Keck Cluster at USF, with average errors of

2.41%, 3.61%, and -10.73%, respectively, compared to the actual TTS observed. While

additional work is necessary to improve the predictive capabilities of QNM, current

results show that QNM has a great deal of promise for determining application TTS for

multi-processor computer systems.

 iv

Preface

Conventional commodity serial processors are nearing their limits for speed gains and

increased computational ability, as evidenced by Intel’s decision to discontinue research

and development of higher clock-rate serial processors in favor of lower rate multi-core

architectures1. Power consumption and heat dissipation make further advances by

increasing clock speeds and transistor density unlikely except for very specialized

applications. Already, major commercial processor manufacturers are exploring the use

of multiple-core technologies to feed consumers’ desires for faster processing times and

more feature rich (and therefore computationally expensive) environments. This effort,

led by the scientific community and driven by the market for processing in the gaming

community, has sponsored a new paradigm in software engineering. As multiple

processor machines become more and more common, programmers are moving away

from the serial approach, with programs considered as a linear sequence of operations, to

a parallelized approach, with programs written to run across many processors or cores,

each solving a small subproblem related to the original problem. However, up to now, it

has been difficult to accurately model the time-to-solution (TTS) for such parallel

systems. This information is highly desirable for a number of reasons, including: users

wish to know how long their programs will run, efficient batch scheduling, and resource

utilization efficiency. Recent research at the University of San Francisco (USF) in

Queueing Network Modeling (QNM) suggests that QNM is a useful methodology for this

problem of estimating TTS.

1 [Kanellos, 2004]

 v

Table of Contents
Vita Auctoris.. i
Acknowledgements and Dedications.. ii
Abstract .. iii
Preface.. iv
Table of Contents.. v
Table of Figures ...viii
Table of Equations .. x
Table of Tables .. xi
I – Introduction ... 1
II – Background and Related Research... 5

A – Scalability Review ... 5
B – Programming Models Review.. 6

1 – Electro-mechanical (Hard) Programming... 6
2 – Textual (Soft) Programming ... 7

2.1 – Serial Programming ... 8
2.2 – Parallel Programming .. 8

2.2.1 – Pseudo-parallelism.. 9
2.2.2 – True Parallelism.. 9

2.2.2.1 – Message Passing .. 9
2.2.2.2 – Remote Procedure Calling ... 11
2.2.2.3 – Shared Memory.. 11

C – Benchmarking Review ... 12
1 – Whetstone ... 13
2 – Dhrystone.. 13
3 – Linpack ... 14
4 – ASCI Purple Benchmark Suite ... 15
5 – NAS Parallel Benchmarks .. 15

D – System Modeling and Prediction Review.. 17
1 – RAM ... 18
2 – PRAM ... 18
3 – LogP.. 18
4 – LogGP... 19
5 – LoPC ... 19
6 – Application Modeling ... 20
7 – Queueing Network Modeling ... 20

III – Methodology and Experimental Environment.. 24
A – Experimental Systems.. 24

1 – Keck Cluster.. 24
2 – MCR.. 25
3 – ALC... 25

B – Experimental Software... 26
1 – NAS Parallel Benchmarks .. 26
2 – MpiP.. 27
3 – NPB Spreadsheet .. 28

 vi

4 – MpiPfilter.. 28
5 – QNM Solver.. 29
6 – InMaker... 29
7 – LBW.. 30

C – MPI Performance Measurement and Modeling Procedure 30
1 – Data Collection and Measurement.. 30
2 – QNM Model and Mean Value Analysis ... 33

D – Correlating NAS-PB CG Classes to Numeric Problem Sizes................................ 35
E – Determining Bandwidth and Latency... 37
F – Determining mpiP Overhead .. 39

IV – Results and Analysis... 45
A – Overview and General Comments ... 45
B – MCR... 46

1 –Runtimes With Respect to Class.. 46
2 –Runtimes with Respect to Processors Allocated.. 47
3 –Runtimes with Respect to Processors Allocated and Class Size 49

C – ALC.. 51
1 –Runtimes With Respect to Class.. 51
2 –Runtimes with Respect to Processors Allocated.. 52
3 – Runtimes with Respect to Processors Allocated and Class Size 54

D – Keck Cluster... 56
1 – Runtimes With Respect to Class... 56
2 – Runtimes with Respect to Processors Allocated... 57
3 – Runtimes with Respect to Processors Allocated and Class Size 59

E – Analysis of QNM Results as Compared to Measured Results 61
1 – Relative Error.. 61

1.1 – Relative Error on MCR.. 61
1.2 – Relative Error on ALC... 62
1.3 – Relative Error on the Keck Cluster.. 64

2 - Summary.. 65
V – Problems Encountered and Further Research .. 66

A – Regionalization and Trending.. 66
1 – Baseline Analysis and Results .. 66
2 – Percent CPU Utilization as Regime Change Metric ... 67

2.1 – MCR Percent CPU Utilization and Trends.. 68
2.2 – ALC Percent CPU Utilization and Trends... 69

B – Model Input Parameterization and Trending ... 70
1 – Initial Analysis and Results .. 70
2 – MCR Analysis and Results ... 71
3 – ALC Analysis and Results .. 74
4 – Keck Cluster Analysis and Results ... 76
5 – Analysis Summary .. 78

C – Class and Problem Sizes, Work Metric, and Data Set Size 79
D – Switch Delay versus No Switch Delay .. 80

1 – MCR Analysis... 80
2 – ALC Analysis.. 82

 vii

3 – Keck Cluster Analysis... 84
4 – Final Analysis ... 86

E – Measure and Predict Additional Systems... 86
F – Measure and Predict Additional Applications.. 86
G – Refine Model for Interconnect... 87

VI – Summary and Conclusion... 88
VII – Appendices .. 89

Appendix A – Latency and Bandwidth Data .. 89
1 – Keck Cluster.. 89
2 – MCR.. 90
3 – ALC... 93

Appendix B – Sample NPB Spreadsheet .. 96
Appendix C – Sample Component Time Bar Charts.. 101

VIII – Bibliography... 105
Index ... 109

 viii

Table of Figures
Figure 1 – Simple QNM Parameterization ... 2
Figure 2 – Cluster Computer QNM Parameterization .. 21
Figure 3 – Measurement and Modeling Control Flow.. 31
Figure 4 – Work Metric and Serial Run Time .. 37
Figure 5 – mpiP Bandwidth Overhead on MCR... 41
Figure 6 – mpiP Latency Overhead on MCR ... 42
Figure 7 – mpiP Bandwidth Overhead on ALC.. 43
Figure 8 – mpiP Latency Overhead on ALC .. 43
Figure 9 – MCR Measured Runtimes With Respect to Class... 46
Figure 10 – MCR Modeled Runtimes With Respect to Class .. 47
Figure 11 – MCR Measured Runtimes With Respect to Processors Allocated................ 48
Figure 12 – MCR Modeled Runtimes With Respect to Processors Allocated 49
Figure 13 – MCR Measured Runtimes With Respect to Processors Allocated and Class
Size.. 50
Figure 14 – MCR Modeled Runtimes With Respect to Processors Allocated and Class
Size.. 50
Figure 15 – ALC Measured Runtimes With Respect to Class.. 51
Figure 16 – ALC Modeled Runtimes With Respect to Class ... 52
Figure 17 – ALC Measured Runtimes With Respect to Processors Allocated................. 53
Figure 18 – ALC Modeled Runtimes With Respect to Processors Allocated 54
Figure 19 – ALC Measured Runtimes With Respect to Processors Allocated and Class
Size.. 55
Figure 20 – ALC Modeled Runtimes With Respect to Processors Allocated and Class
Size.. 55
Figure 21 – Keck Cluster Measured Runtimes With Respect to Class............................. 56
Figure 22 – Keck Cluster Modeled Runtimes With Respect to Class 57
Figure 23 – Keck Cluster Measured Runtimes With Respect to Processors Allocated... 58
Figure 24 – Keck Cluster Modeled Runtimes With Respect to Processors Allocated 59
Figure 25 – Keck Cluster Measured Runtimes With Respect to Processors Allocated and
Class Size .. 60
Figure 26 – Keck Cluster Modeled Runtimes With Respect to Processors Allocated and
Class Size .. 60
Figure 27 – MCR Measured and Modeled Runtimes With Respect to Class Size........... 62
Figure 28 – ALC Measured and Modeled Runtimes With Respect to Class Size............ 63
Figure 29 – Keck Cluster Measured and Modeled Runtimes With Respect to Class Size64
Figure 30 – MCR Percent CPU Utilization and Trendlines ... 68
Figure 31 – ALC Percent CPU Utilization and Trendlines .. 69
Figure 32 – MCR CG Class S Component Times with Trendline 72
Figure 33 – MCR CG Class A Component Times with Trendline................................... 73
Figure 34 – MCR CG Class C Component Times with Trendline 73
Figure 35 – ALC CG Class W Component Times with Trendline................................... 74
Figure 36 – ALC CG Class B Component Times with Trendline.................................... 75
Figure 37 – ALC CG Class D Component Times with Trendline.................................... 75
Figure 38 – Keck Cluster CG Class S Component Times with Trendline 76

 ix

Figure 39 – Keck Cluster CG Class A Component Times with Trendline....................... 77
Figure 40 – Keck Cluster CG Class C Component Times with Trendline....................... 77
Figure 41 – MCR Class S Model Comparison ... 80
Figure 42 – MCR Class A Model Comparison... 81
Figure 43 – MCR Class C Model Comparison... 81
Figure 44 – ALC Class S Model Comparison .. 82
Figure 45 – ALC Class A Model Comparison.. 83
Figure 46 – ALC Class C Model Comparison.. 83
Figure 47 – Keck Cluster Class S Model Comparison ... 84
Figure 48 – Keck Cluster Class A Model Comparison... 85
Figure 49 – Keck Cluster Class C Model Comparison... 85
Figure 50 – Keck Cluster Latency and Bandwidth Curve .. 89
Figure 51 – MCR Bandwidth Curve... 91
Figure 52 – MCR Latency Curve.. 92
Figure 53 – ALC Bandwidth Curve.. 94
Figure 54 – ALC Latency Curve .. 94
Figure 55 – MCR Class S Component Times... 101
Figure 56 – MCR Class W Component Times ... 102
Figure 57 – MCR Class A Component Times .. 102
Figure 58 – MCR Class B Component Times .. 103
Figure 59 – MCR Class C Component Times .. 103
Figure 60 – MCR Class D Component Times .. 104

 x

Table of Equations
Equation 1– Single Class Mean Value Analysis Mathematical Algorithm...................... 23
Equation 2– Formula for Parameter-Based Work Metric... 36
Equation 3 – Determining mpiP Overhead... 40
Equation 4 – Determining Relative Error in QNM Models.. 61

 xi

Table of Tables
Table 1 – Message Sizes for NPB CG.. 35
Table 2 –Number of Messages for NPB CG .. 36
Table 3 –Work Metric for NPB CG.. 36
Table 4 – mpiP Overhead on MCR... 41
Table 5 – mpiP Overhead on ALC ... 42
Table 6 – Relative Error of QNM on MCR .. 62
Table 7 – Relative Error of QNM on ALC... 63
Table 8 – Relative Error of QNM on the Keck Cluster .. 65
Table 9 – MCR Trendline Equations, Predictions, and Measured Results....................... 68
Table 10 – ALC Trendline Equations, Predictions, and Measured Results...................... 69
Table 11 – Computation Trendline Equations, Predictions, and Measured Results......... 78
Table 12 – MPI Active Trendline Equations, Predictions, and Measured Results........... 79
Table 13 – Keck Cluster Latency and Bandwidth Raw Data ... 90
Table 14 – MCR Bandwidth and Latency Data with mpiP .. 92
Table 15 – MCR Bandwidth and Latency Standard Deviation with mpiP....................... 93
Table 16 – MCR Bandwidth and Latency Data without mpiP ... 93
Table 17 – ALC Bandwidth and Latency Data with mpiP ... 95
Table 18 – ALC Bandwidth and Latency Standard Deviation with mpiP........................ 95
Table 19 – ALC Bandwidth and Latency Data without mpiP .. 95

 1

I – Introduction

In today’s world, the need for computing power is becoming more pressing daily. Our

need to process, analyze, and store data is quickly exceeding the capabilities of small

self-contained serial machines, such as the modern desktop PC. Initially, the creation of

supercomputers filled this gap: large-scale self-contained parallel machines. However,

current markets, as well as the costs to develop and maintain such machines, are quickly

making such machines less common, used only in highly specialized environments. A

third type of machine exists, however. This relatively new type of machine, known as a

cluster and built from common, and often inexpensive, commodity components for

computation, and either commodity or specialized interconnects, is easy to construct,

inexpensive compared to specialized, custom machines, and is incredibly pervasive in the

market. However, how well do clustered machines work?

There have been many attempts to quantify the performance of clustered computers.

One approach, Queueing Network Modeling (QNM), is a little tried, but potentially

useful means of modeling such systems. QNM, which has its beginnings in the modeling

of traffic patterns, has expanded. It is now useful for modeling everything from CPU and

disk services, to computer systems, to service rates in store checkout lines. This history

of successful usage, as well as the correspondence of QNM components to commodity

clusters, suggests that QNM is a useful tool for both the cluster designer, interested in the

best price/performance ratio, and the user of existing machines, interested in performance

rates and time-to-solution.

 2

Figure 1 – Simple QNM Parameterization

Queueing Network Modeling is an approach to complex system modeling where a

network of analytically evaluated queues represents the computer.2 Figure 1 above

shows a simple QNM model. In this model, customers are shopping in a store.

Customers enter the store and proceed to wander through the aisles, modeled as a delay

center, assuming each customer takes on average the same amount of time to shop.

When a customer finishes shopping, they proceed to the checkout line, where they may

have to queue behind other customers. The time it takes a customer to go from the end of

the queue to the head of the queue is dependent on the number of customers preceding.

Therefore, the checkout line is a queue, and the cashier is a queueing center. Assuming,

2 [Lazowska, 1984]

Bagger

Store Aisles 0

1

2

3

 3

2

0

1
$

Checkout Line

Enter

Center

Queue
Exit

 3

again on average, the bagger requires the same amount of time to service each customer,

the bagger is a delay center. We assume a large pool of store clerks who can do bagging,

so that customers do not need to wait for bagging. After visiting the bagger, the customer

either exits the store, or returns for more shopping. If customers are free to enter the

store at any time, and there is no limit to the number of customers in the store at any

given time, this example represents an open QNM model. If, on the other hand, there is a

limit to the number of customers that may shop at any given time (i.e.: a maximum

occupancy), and new customers may not enter the store once this limit is reached unless a

shopper exits, then this example represents a closed QNM model. Chapter II, Section C,

Subsection 7 explores this relationship as applied to parallel computers further.

The general goal of this research is to explore the hypothesis that QNM is an

appropriate approach for estimating the runtimes of applications in parallel computers.

This thesis will focus on analyzing the viability of QNM as a model for actual machine

performance. We will collect and present data on actual machine behavior, and then we

will run the QNM models, and compare the results with the measured machine

performance to see how accurately QNM can model the observed behavior.

The remainder of this thesis is organized into the following sections:

II. Background and Related Research

Summary of work related to this research, both historical and recent.

III. Methodology and Experimental Environment

Description of the various components and methods used to create, test, and

validate the QNM model.

 4

IV. Results and Analysis

An analysis of collected data and report of the findings.

V. Problems Encountered and Further Research

Description of problems encountered during the research process, and areas

for further research on the QNM model.

VI. Summary and Conclusion

Summary of the research results and conclusions drawn from result analysis.

 5

II – Background and Related Research

A – Scalability Review

In parallel computing, there are two interconnected facets of scalability, both measured

by time to solution. The first is the Strong Scaling Problem, sometimes called Problem-

Constrained Scaling. In this type of scaling, a given application with a given input set

runs on increasing numbers of nodes. Generally, one would expect that a system with

more nodes should produce smaller times-to-solution than a system with fewer nodes.

However, most applications on large systems begin to experience larger and larger

overheads, due in part to the larger number of inter-node messages flowing over the

network and also, in part, to load imbalance. Upon reaching some critical number of

nodes, not only does the addition of new nodes fail to increase performance, additional

nodes may actually decrease performance. Only embarrassingly parallel networks, such

as seti@home, boinc, and others have largely overcome this limitation. For these

applications, the computations performed by individual nodes have little or no

relationship to computations on other nodes, in effect making them embarrassingly

parallel. On the other hand, for tightly coupled applications that require interaction and

communication, this limitation is very real, and places an effective cap on the size and

type of computations these clustered systems may perform.

The second facet of parallel computing is the scalability of the computational algorithm

as the problem size or input size increases. Time to solution for problems submitted to a

cluster will typically increase as the problem or input set increases in size. Adding

additional nodes to the computation can mollify this effect, traditionally known as the

 6

Weak Scaling Problem. It involves balancing the increase in solution time from the

expanded input with and the reduction in solution time from the addition of extra

computational nodes. This version of the problem is Classic Weak Scaling or Weak

Scaling II in this thesis, and is sometimes called Time-Constrained Scaling. A

subversion of this problem, referred to as Weak Scaling I in this thesis, deals with the

increase in time to solution as the input size increases but number of nodes remains

constant.

B – Programming Models Review

Every user knows that computers run programs, and this ability gives computers their

power. This begs the question: what is a program? A program is a set of instructions

given to the computer that allow it to receive information from the outside world,

manipulate that information in some meaningful manner, and use the manipulated

information to take action in the outside world. (For our purposes, the outside world is

anything that exists outside the processing unit, including disk drives, printers,

keyboards, main memory, etc.) Several different methods of providing and organizing

these instructions exist, and are explored in the following subsections.

1 – Electro-mechanical (Hard) Programming

The first computers were programmed by mechanically establishing electrical

connections (hard connections, thus hard programming) between various components.

To change the program required rewiring the machine to reflect the new connections. A

simple example of this is a light switch. The switch accepts input (flipping the switch),

manipulates the input (creating an electrical connection within the switch), and takes

 7

some action (electricity flows, and the light comes on/goes off). To get the switch to

perform in another manner (say three positions instead of two) requires opening the

switch and modifying the internal working of the switch. (This is not recommended, as it

can be EXTREAMLY DANGEROUS!) This method is still used in chip design,

industrial applications, and many common items. The read/decode/execute/store routine

in a computer’s CPU is such a program physically embedded into the chip. Electro-

mechanical programming is generally much less expensive than textual programming,

discussed following, which relies on electro-mechanically programmed devices (software

does nothing if not run on the proper hardware). These devices, however, are often

difficult to modify, and wear out through regular use, eventually leading to failure.

Programmable gate arrays, while being easily modified, are a form of electro-mechanical

programming, as it requires physically changing the interior configuration of the array to

change the program. Programmers often design electro-mechanical programs graphically

using specialized CAD software. Parallel processing requires the addition of new

hardware to handle the parallel input.

2 – Textual (Soft) Programming

As computer science began to evolve, the stored-program concept emerged, giving rise

to textual programming. In this type of programming, actions themselves are not

hardwired into the machine, so much as the potential for actions. Instructions are read,

temporary (soft) connections are made, and various circuits are activated or deactivated,

on the fly. This is what a typical person thinks of when mentioning the word “program.”

Textual programming results in much greater flexibility, both in modifying the actions

taken by the machine and in determining which program will execute. Programs of this

 8

type are tightly bound to the type of device they will properly run on, however. Textual

programming is often done using word-processing software (the text), though graphical

means do exist.

Because soft programming is so dependent on its hardware, several different

programming paradigms exist to create soft programs. The major paradigms are explored

below.

2.1 – Serial Programming

Serial programming looks at instructions the way one would the directions in a

cookbook: as a set of logical steps done strictly in order, until no more steps remain.

Until recently, this was, by far, the dominant paradigm. Most serial computers, at least

from the programmer’s and user’s views, are single-instruction, single-data (SISD). One

instruction executes at a time, and it executes on a single piece of information. (In

reality, modern computers are able to optimize code on-the-fly using pipelines and code

reordering, but this behind-the scenes work is unseen by the user or programmer.)

Nevertheless, high-end specialty computers of this type exist, known as vector

computers. These computers are single-instruction, multiple-data (SIMD). They still

execute one instruction at a time, but it affects multiple pieces of information.

2.2 – Parallel Programming

Parallel programming is less rigid in the ordering of instructions than serial

programming. Instead, parallel programs are the “efficiency experts” of programming.

They see instructions based on the data dependencies and conflicts. Those areas where

data in one portion of the program is dependent on instructions executed elsewhere in the

 9

program run (more or less) serially, and those areas where there are no dependencies and

there are no data conflicts run concurrently (in parallel). Depending on the underlying

hardware, this concurrency is achieved in one of two basic means: pseudo-parallelism

and true parallelism.

2.2.1 – Pseudo-parallelism

Programmers achieve pseudo-parallelism when a parallel programming paradigm is

used to program a SISD or SIMD machine. Since the machine can only execute one

instruction at a time, true instruction parallelism is impossible. However, using a

scheduler program it is possible to swap multiple programs onto the processor in a very

brief period. If done quickly enough, it will appear to the user as though the programs

are running concurrently. Examples of pseudo-parallelism are threads and multi-

processing common in most personal computers.

2.2.2 – True Parallelism

True parallelism requires that multiple processors be available, and that each processor

be capable of executing a different instruction on different data (multiple-instruction,

multiple-data, or MIMD3). Programmers have many different means of exploiting this

property, the major means of which we detail below.

2.2.2.1 – Message Passing

The Message Passing Interface (MPI) is currently the most common form of

programmed parallelism. MPI is an interface, with no specific implementation

3 While multiple-instruction, single-data (MISD) machines are possible in theory, few, if any, practical
applications for such a machine exist.

 10

requirements, other than the interface is maintained. Thus, there are several different

implementations of MPI, both public and proprietary. MPICH, LAM, LA-MPI, and

USF-MPI are some of the more common implementations of MPI. MPI assumes that the

entire program is de facto parallel, and it is the responsibility of the programmer to

determine which portion of the code and data is relevant on each machine, based on a

rank number given to each node on program startup. As its name implies, MPI utilizes

message passing to communicate between the nodes, and contains routines to

send/receive messages, synchronize the machine, establish communication patterns, and

perform other cluster management tasks. MPI requires that the programmer explicitly

determine the division of the data and the message passing structure. MPI was the

parallel programming model used for this research.

In MPI, each node is a stand-alone entity, possessing its own memory, operating

system, background processes, and other system resources. Each node receives identical

copies of the parallel code to execute, and a subset of the overall data set to perform

computation on. In general, the processes exchange data using messages to work on the

global problem. In the NAS-PB CG code, which formed the basis of our testing, as each

node finishes computation on its subset of the data, it exchanges information about the

results with other nodes in the form of messages passed between the nodes. Once this

communication is complete, each node then begins to reprocess the data, until the

program finishes execution. At this point, the subsets of the data are recombined into the

overall set, and the results are returned to the user.

 11

2.2.2.2 – Remote Procedure Calling

In Remote Procedure Calling (RPC), each processor works independently on portions

of the data. When the initiating node needs to pass data or requires a service from

another node, the initiating node performs a function call to the remote node. The remote

node then collects the data or performs the service and sends a procedure call return to

the initiating machine. This makes RPC similar to object-oriented threading on SISD and

SIMD machines.

2.2.2.3 – Shared Memory

Most means of parallelism assume that each computation node in the system is

operating with its own, local, private memory hierarchy. This requires that nodes pass

messages to each other when information not present locally is required, as explained in

the following sections. However, there are machines in which every processor has access

to a global memory hierarchy. In these shared memory machines, communication

between processes occurs by writing to this global memory space, eliminating the need

for message passing. Most threading implementations and multi-core commodity

machines use shared memory for inter-process communication.

OpenMP, a type of shared memory parallel programming, allows the programmer to

designate portions of a program as either serial or parallel, allowing the compiler to

handle the details of actual parallelization. During execution, when a parallel section of

code is encountered, the OMP libraries send copies of the parallel code from the head

node to the remote nodes. The remote nodes then begin processing the data, using shared

memory to communicate with the other remote nodes and the head node. At the end of

the parallel portion of the program, the remote nodes return the data to the head node and

 12

serial execution resumes, until the next parallel portion of the program, where the process

repeats. In OMP, the programmer focuses on the areas of parallelism, and leaves the

details of data division and message passing to the OpenMP libraries.

C – Benchmarking Review

Benchmarking is a means of attempting to measure a computer’s performance in

relation to that of other computers over a known workload, usually by some meaningful

output metric such as time to solution or number of computations performed. There is

much research to confirm the notion that there is not and can never be a perfect

benchmark, as all users’ needs are different, and no artificial means of measurement can

consider all possibilities. However, benchmarks can provide useful information in one of

two ways.

Some benchmarks attempt to simulate the average user by attempting typical sets of

tasks undertaken in a typical computing environment, including opening text editors,

calling compilers, and running complex math packages. Benchmarks of this type are

very difficult to create for an “average user,” as the needs of every user of a system tend

to vary widely. Often, when this type of benchmark is required, one is specifically

created to model a known system usage, and the results cannot be abstracted for other

types of usage. New usage paradigms require a completely new benchmark.

Other benchmarks, focus on one type of machine usage, and test many different ways

of carrying out that specific task and the possible ways it may be used. These

benchmarks are easy to acquire, compared to the more general kind, and there has been

much research into this type of benchmarking scheme.

 13

This section will focus on pre-coded benchmarks. Another set of benchmark types,

pencil and paper benchmarks, where the researcher is free to develop his or her own

solution, are not considered here.

1 – Whetstone

Designed in the 1960’s by Brian Wichmann in Whetstone, England, and first

implemented by Harold Curnow in 1972, Whetstone is the first major synthetic

benchmark. Although it includes some integer code, Whetstone functions primarily on

floating point operations with particular focus on the transcendental functions such as:

sin, cos, atan, log, and exp. Both scalar and vector solutions are calculated.4

Whetstone is specifically useful to those whose work requires many floating-point

calculations on tightly bound spatially local variables, as these are the conditions where

Whetstone excels.5 Unfortunately, for users of mostly integer-based calculations, such as

text editing, O/S operations, compiling, graph algorithms, and en/decrypting data,

Whetstone will not offer very meaningful results.

2 – Dhrystone

R. P. Decker developed Dhrystone in 1984. As its name implies, Dhrystone is a

response to the inadequacies of Whetstone. Dhrystone is CPU bound, and performs no

I/O or system calls.6

Dhrystone is “designed to test performance factors important in non-numeric systems

programming.”7 It does no floating-point operations. It is also very dependent on the

4 [Balsa, 1997]
5 [Bramer, 2004]
6 [Weboped, 2004]

 14

cache size, and systems with smaller caches will notice significant performance

degradation. Dhrystone is also weak in the way it handles strings, and this may lead to

unreliable results.8

3 – Linpack

Linpack is “a measure of a computer’s floating-point rate of execution . . . determined

by running a computer program that solves a dense system of linear equations.”9 Jack

Dongara designed Linpack in the 1970’s and it was used extensively in the 1980’s (and

continues to enjoy widespread use as the benchmark used to determine the Top 500

supercomputers) as a means of gauging computer performance. Originally implemented

in FORTRAN, Linpack works by solving linear equations and least squares problems.

Researchers are free to develop their own programs to implement the Linpack

benchmarks, as long as they solve the problems defined by the Linpack specifications.

The problems include linear systems with general, banded, symmetric indefinite and

positive definite, triangular, and tridiagonal square matrices, as well as QR and singular

value decompositions of rectangular matrices as applied to least-squares problems.10

Linpack makes a convenient tool for performance measurement, and is used by the Top

500 Supercomputer List, because “[b]y measuring the actual performance for different

problem sizes n, a user can get not only the maximal achieved performance Rmax for the

problem size Nmax but also the problem size N1/2 where half of the performance Rmax

is achieved.”11 However, Linpack is not a panacea for benchmarking. Its use of memory

7 [Bramer, 2004]
8 [Bramer, 2004]
9 [Dongara, 2004a]
10 [Dongara, 2004b]
11 [Mauer, 2004]

 15

is not very efficient, resulting in a lot of overhead from data relocation.12 Linpack is also

computation bound and does not effectively evaluate the network interconnect.

4 – ASCI Purple Benchmark Suite

The ASCI Purple benchmark suite was created to guide the procurement of the ASCI

Purple machine at LLNL and contains several large-scale benchmarks, which represent

the planned workload for the machine. From the ASCI Purple website: “[T]he intent of

these benchmarks is to measure the execution performance and compiler capabilities....

Each of the benchmark programs represents a particular subset and/or characteristic of

the expected ASCI workload, which consists of solving complex scientific problems

using a variety of state-of-the-art computational techniques. It is assumed that the details

of hardware and/or software environment between the benchmarking configuration…

may differ. Differences between the hardware and/or software environment between the

benchmarking configuration… can be compensated for by coherent[ly] scaling arguments

to more relevant configurations.”13 The ASCI Purple Benchmarks are written for MPI

and OpenMP.

5 – NAS Parallel Benchmarks

The Numerical Aerodynamic Simulation Parallel Benchmarks (NAS-PB) are described

as: “[A] small set of programs designed to help evaluate the performance of parallel

supercomputers. The benchmarks, which are derived from computational fluid dynamics

(CFD) applications, consist of five kernels and three pseudo-applications.”14

12 [Dongara, 2004a]
13 [Purple, 2001]
14 [NAS-PB, 2004]

 16

Developed at NASA’s Ames Research center, the benchmarks consist of two major

components: five parallel kernel benchmarks and three simulated application

benchmarks,15 16 characterized as follows:

Kernel Benchmarks:

EP Embarrassingly Parallel: Compute bound with virtually no inter-processor

communication.

MG Multigrid: Tests both short and long distance communication.

CG Conjugate Gradient: Tests irregular long distance communication.

FT Fast Fourier Transform: Rigorous long-distance communication test.

IS Integer Sort: Tests both computation speed and communication

performance.

Simulated Applications:

LU Lower/Upper: Regular-sparse, block lower and upper triangular system

solution. Limited parallelism. Very sensitive to small message

communication performance. Large numbers of small (40 byte) messages.

SP Scalar Pentadiagonal: Solves scalar pentadiagional systems resulting from

full diagonalization of the approximately factored scheme. Provides good

load balance and coarse-grained communication.

15 [Bailey, 1994]
16 [Bailey, 1995]

 17

BT Block Tridiagonal: Solves block tridiagonal systems of 5×5 blocks.

Provides good load balance and coarse-grained communication.

The pre-coded MPI-based benchmarks are configurable, at compile time, for class sizes

and numbers of nodes. (Pencil and paper as well as OpenMP algorithms also exist.)

Class groups (S, W, A, B, C, and D) provide increasingly larger problems used to test

MPI. Certain tests have restrictions on the number of processors. Processor allocations

for BT and SP must be a square value (e.g. 1, 4, 9, 16 ... processors). Allocations for CG,

FT, IS, LU and MG must be a power of two (e.g.1, 2, 4, 8 ... processors). There are no

size restrictions for EP.

D – System Modeling and Prediction Review

Benchmarking has little value in itself, other than for comparing existing systems.

However, when used with performance models, benchmark results can provide prediction

of future system performance, as well as system performance under differing

configurations (different problem sizes or numbers of nodes). While often simplified, as

it is impossible to account for every variable in each individual system, these models

frequently provide reasonable forecasts of system performance when known factors, such

as number of nodes or network speed, are changed. Different modeling systems make

different assumptions about the system modeled. That is, they ignore certain

“inessential” factors and focus on other “important” factors. Consideration of these

different models is essential for constructing a working model. We will discuss these

models in the following sections.

 18

1 – RAM

The Random Access Machine model is a favorite model for sequential computers. It

consists of an unbounded number of memory cells and each cell consists of an integer of

unbounded size. It includes most basic machine instructions, and assumes a constant

time per instruction. When used to analyze a particular algorithm, RAM provides results

in the form of time complexity measures (number of instructions executed) and space

complexity measures (number of memory references made.) While RAM is not suited

for parallel modeling itself, it is the progenitor of an entire class of parallel models.17

2 – PRAM

Parallel Random Access Machine grew from RAM. PRAM assumes an unbounded

collection of RAM processors, an unbounded collection of memory cells globally shared

by all processors, and an unbounded set of local registers.18 Further, it also assumes that

all processors in the machine operate synchronously and that interprocessor

communication, via shared memory, requires no overhead.19 Returned results are

complexity numbers, similar to RAM.

3 – LogP

Both RAM and PRAM are machine independent. LogP handles these inadequacies by

taking into account machine-specific parameters. It achieves this by utilizing measured

or estimated input variables such as: the number of processors, the communication

17 [Tvrdik, 1999]
18 [Tvrdik, 1999]
19 [Culler, 1993]

 19

bandwidth, the communication delay, and the communication overhead.20 It assumes

asynchronous processors, and a maximum limit on the number of messages that may be

in the system at a given time.21 LogP effectively measures point-to-point

communication. LogP, as the rest of the “Lo” family of models, derives its name from

the mathematical symbols used in the model.

4 – LogGP

LogGP is an extension of the LogP model. It incorporates long messages into LogP,

something not previously supported. LogGP utilizes the same inputs as in LogP, and

adds an additional input, bandwidth for long messages, to the model.22 These specifically

gear LogGP toward the current trends in commodity cluster computing, where both short

and long messages often occur in the network.23

5 – LoPC

LoPC is another logical extension of the LogP model. It does not handle long

messages, as does LogGP, but it does handle contention issues with the addition of a

contention parameter and the removal of the communication bandwidth parameter. LoPC

works well with non-tightly synchronized systems because of its inclusion of a contention

parameter, which becomes more important in less synchronized systems.24

20 [Culler, 1993]
21 [Culler, 1993]
22 [Alexandrov, 1995]
23 [Alexandrov, 1995]
24 [Frank, 1997]

 20

6 – Application Modeling

Many models are designed around modeling and predicting the behavior of particular

applications, and generalizing the performance of particular machines from the collected

data. The works of Allan Snavely25, Jack Dongara26, Ipek27,28, and Lee29 exemplify this

type of modeling.

7 – Queueing Network Modeling

QNM, a type of application modeling, is a form of modeling in which a system reduces

to a small number of relevant parameters, which can then be solved analytically using

various solution techniques. Originally designed to model automobile traffic across

bridges, through tunnels, and around highway interchanges, QNM underwent successful

modification to apply to a wide range of systems in which queueing bottlenecks can

affect performance, including computer science. Research by Lazowska, et al, shows that

QNM is highly useful in modeling the performance of multiple magnetic storage devices

servicing the needs of multiple computational units.30

25 [Snavely, 2001]
26 [Dongara, 2004b]
27 [Ipek, 2005]
28 [Ipek, 2006]
29 [Lee, 2006]
30 [Lazowska, 1984]

 21

Figure 2 – Cluster Computer QNM Parameterization

Figure 2 repeats Figure 1 from Chapter I, replacing the simple example parameters

with ones more appropriate for modeling parallel computers. The aisles in our fictional

store are now the fabric of the network switch. The checkout lines and cashiers become

our MPI and interconnect stacks, which reflect the fact that messages may be queued

waiting for service by MPI. The processing nodes replace our baggers. Finally, instead

of customers, we now have messages that cycle through the system. Our cluster is a

closed system, meaning there are a maximum number of messages that may be in the

system at any time, and new messages must wait for old messages to exit if the system is

at capacity. The number of messages is the number of processing units in the system,

which models the assumption that a given processor is either generating a message to

Processing Units

Network Switch 0

1

2

3

 3

2

0

1
$

MPI & Interconnect Stacks

Enter

Center

Queue
Exit

 22

send, waiting for receipt of a message to, receiving a message, or computing because of a

received message. Thus, messages become the basic unit of work in the model.

The algorithm used to solve the QNM model in the above description, is the Mean

Value Analysis (MVA) algorithm, given in Equation 1 below. In the equation, the

number of centers (K) is the sum of the number of computation nodes, plus one network

switch, plus one computation delay center. While Figure 2 above shows a computation

delay center for each queueing center, since each delay center adds the same constant

average delay to a customer, using one delay center through which all messages must

pass produces equivalent results as including a delay center for each queueing node. The

number of customers in the system (N) assumes one message per node, and is equal to

the number of computation nodes. The service demand (Dk) for the switch was originally

number of messages divided by bandwidth plus latency (though, as explained later in

Chapter 3, Section C2, the service demand was explicitly set to zero in some cases). Dk

for the processing nodes was the amount of time it took the average node to complete its

(non-MPI) calculations Finally, Dk for the queueing nodes (the MPI stack) was the

amount of time MPI was active during message transfer. Upon solution, the model

provides the system throughput (X), the residence time for an average message at each

center (Rk), and the average queue length for each queueing center (Qk).

The first line of the algorithm in Equation 1 initializes the queue lengths for each

queueing center to zero. The second line iterates the algorithm over each customer in the

system. The third line iterates over each service center, calculating the residence time at

that center for the number of customers currently determined by the previous loop on the

second line. For delay centers, this simply adds a delay for that customer as it receives

 23

service. For queueing centers, it adds a delay based on the number of customers waiting

for service at that center and the service time for that center. The fourth line determines

the current system throughput given the delays calculated on line three and the number of

customers determined on line two. The final, fifth line, then updates the queue lengths at

each center given the current system throughput and residence times as calculated by

lines three and four. Once all iterations are complete, X, Rk, and Qk as defined in the

preceding paragraph, are returned to the user

Equation 1– Single Class Mean Value Analysis Mathematical Algorithm31

31 [Lazowska, 1984]

()

kXRkQKk
kR

nX
kQkD

kD
kRKk

Nn
k QKk

K

k

←←

←

+
←←

←

←←

∑
=

⎪⎩

⎪
⎨
⎧

 do to1for

centers) (queueing

centers)(delay
1

 do to1for

do to1for

0do to1for

1

Throughput System
center at Demand Service

center at time Residence
system the in customers ofNumber

center at length Queue
centers ofNumber

≡

≡

≡
≡

≡
≡

X
kkD

kkR
N

kkQ
K

 24

III – Methodology and Experimental Environment

This section begins by describing and defining the experimental systems and software

in Sections A and B, and continues by describing the experimental procedure used in

Section C. Sections D, E, and F describe some of the pre-experimental data analysis that

was necessary for result analysis.

A – Experimental Systems

1 – Keck Cluster

The Keck Cluster is the University of San Francisco Department of Computer

Science’s 24.67 GFlop supercomputer. As described on its website, the Keck Cluster is

“… a 64 node Beowulf cluster … [containing] Dual Pentium III 1GHz CPUs, 1GB RAM,

[and a] Myrinet Network card … connected by … a 2Gbps Myrinet network used

exclusively for communication between MPI programs.”32 “Beowulf Clusters are

scalable performance clusters based on commodity hardware, on a private system

network, with open source software (Linux) infrastructure.”33

The default MPI environment on the Keck Cluster is Myrinet’s MPICH-GM v.

1.2.4..8a, which was used to access all compilation, linkage, and execution utilities.34

The Myrinet hardware is version LANai 9, PCI64B. See Chapter VII-A-1 for bandwidth

and latency details.

The Keck Cluster is a login/logout system in which the user explicitly reserves the

desired nodes for exclusive use and for an indefinite period. Hence, it has no batch

32 [Keck, 2004a]
33 [Beowulf, 2005]
34 [Keck, 2004b]

 25

execution control. It runs RedHat Linux 8.0. The University of San Francisco replaced

the Keck Cluster and all its supporting documentation with a new cluster in the fall of

2006.

2 – MCR

MCR is a multiple node supercomputer located at Lawrence Livermore National

Laboratory. MCR stands for Multiprogrammatic Capability Cluster.

MCR is “a large (11.2 TF) tightly coupled Linux cluster … has 1,152 nodes, each with

two 2.4GHz Pentium 4 Xeon processors and 4GB of memory … runs the LLNL CHAOS

software … which incorporates … Red Hat Linux.”35 Its peak performance is

11.06TFlop/s.36

Compilation, linkage, and execution was performed on MCR using the native Intel

compilers icc and ifort, both v. 8.1, under both CHAOS v. 2 and CHAOS v. 3.

MCR uses a Quadrics QsNet Elan 3 interconnect, which delivers high bandwidth (>300

MB/s) with low latency (<5.0 µs).37 MCR utilizes the LCRM/SLURM batch control

system, and Quadrics MPI, a derivative of MPICH 1.2.4.38

3 – ALC

ALC is another multiple node supercomputer located at Lawrence Livermore National

Laboratory. ALC stands for ASC Linux Cluster.

35 [M&IC, 2004]
36 [LCOCF, 2006]
37 [M&IC, 2002]
38 [Linux, 2006]

 26

ALC has 960 nodes, each with two 2.4GHz Pentium 4 Prestonia processors and 4GB of

memory, and runs the LLNL CHAOS software.39 Its peak performance is 9.2 TFlop/s.40

Compilation, linkage, and execution was performed on ALC using the native Intel

compilers icc and ifort, both v. 8.1, under both CHAOS v. 2 and CHAOS v. 3.

ALC uses a Quadrics QsNet Elan 3 interconnect, which delivers high bandwidth (>300

MB/s) with low latency (<5.0 µs).41 ALC utilizes the LCRM/SLURM batch control

system, and Quadrics MPI, a derivative of MPICH 1.2.4.42

ALC and MCR are very similar systems in hardware, installed software, and

configuration. The main differences lie in the concrete hardware components

(motherboards, chipsets, etc.). Thus, they provide similar, though not identical, test

systems, and perform similarly for the same application.

B – Experimental Software

1 – NAS Parallel Benchmarks

The flavor used for the benchmarking in the study is NPB 2.4, which uses MPI, and is

commonly used by other researchers.

We chose the CG test as the base test for collecting measurement data about the test

systems, in part because of its common use for benchmark studies. CG’s main loop:

• Post non-blocking point-to-point receive to nodes containing neighboring

data.

39 [ASC, 2004]
40 [LCOCF, 2006]
41 [LCOCF, 2006]
42 [Linux, 2006]

 27

• Perform blocking point-to-point send.

• Wait for receive to complete.

• Perform calculation and loop.

provides behavior typical of many MPI programs, is easy to measure, and easy to model.

2 – MpiP

As described in its documentation, “mpiP is a lightweight profiling library for MPI

applications.”43 The LLNL staff developed mpiP, and it is a publicly available resource,

through either LLNL or SourceForge.

MpiP intercepts an application’s linkage to MPI programs using the standardized PMPI

interface, thus allowing mpiP to collect information concerning a variety of MPI calls.

The application calls the mpiP routines, which then collect some system state data, such

as the call stacks and procedure call timings, and then call the related MPI routines.

When MPI routines return, mpiP records timing and counter information. MpiP can be

linked at run-time, thus avoiding the need to recompile. Generating global statistics only

at the end of execution, mpiP has very low overhead. This is explored further in Chapter

III, Section F.

MpiP maintains several control settings, manipulated by setting system variables,

passing options on the command line, or during program execution. By default, mpiP

begins timing as soon as the MPI_Init() routine is encountered in the code. However, the

NPB provide for one warm-up iteration of the code to ensure the necessary data is in

memory and the cache is full. In order to accommodate this warm-up iteration in mpiP

43 [MpiP, 2005]

 28

and provide consistency in the measured timings, the program began execution with the

mpiP timers disabled. The NPB code was modified such that when NPB began timing

code execution, the mpiP timers were also enabled and began data collection.

3 – NPB Spreadsheet

The NPB spreadsheet, developed as part of an LLNL Research Subcontract, is

designed to receive, as input, selected values from the NAS-PB Suite and mpiP output

files. It then uses these values to calculate model inputs for the QNM Solver, as well as

generating the command line for inMaker, a program written for this project that

generates the QNM Solver input file for that dataset.

The spreadsheet also performs error analysis between modeled and measured values,

and graphically displays the results, along with a breakdown of the measured components

and their resultant model outputs. It also graphically compares the components of the

model’s wall clock time for the application to the measured components of the wall clock

time. Additional technical details about the NPB spreadsheet are available in ancillary

documentation.

4 – MpiPfilter

MpiPfilter is a simple Java program, developed as part of an LLNL Research

Subcontract, that filters the output files from mpiP and NAS-PB and creates a text file

usable as input for the NBP Spreadsheet.

The program reads the output files generated by NPB and mpiP and compiles data on

several metrics produced by NBP, mpiP, the Linux time command, or some combination

of these. These include: the number of messages generated, average size of messages,

 29

aggregate application, MPI and MPI wait times, elapsed time, MOPS/s, MOPS/s/process,

and, when possible, CPU utilization and average elapsed time. We collected some

unused metrics for future research. In addition, some identifying metadata, such as date

run and head node PID to assist in separating the various runs. Using the average

message size and internally programmed data tables, the program also calculates the

network bandwidth and latency. Results are returned as a data file for entry into the NPB

Spreadsheet.

5 – QNM Solver

The QNM (Queueing Network Model) Solver is a Java program, ported from

algorithms and FORTRAN code in [Lazowska, 1984], and developed as part of an LLNL

Research Subcontract. Using input files generated by inMaker, based on values from the

NPB spreadsheet, gathered from mpiP and NAS PB suite files, the program models the

system as a queueing network. The solver performs single class mean value analysis

(Equation 1 above), multiple class MVA, single class load dependent service center

solution, and is capable of batch execution. We developed the new solver to allow easy

parameterization and alteration of the modeling software in order to accommodate the

peculiarities of the modeled environment.

The output of the solver is entered into the NPB spreadsheet to complete the modeled

vs. measured validations.

6 – InMaker

A simple Java program, developed as part of the LLNL Research Subcontract, which,

when given parameters for the QNM solver, will create as output a file that can be used

 30

as input for the QNM solver. This simplifies execution of the QNM solver program by

freeing the user from the repetitive task of entering service center parameters.

7 – LBW

LBW is a latency and bandwidth tester developed at LLNL. According to the

documentation, LBW “…attempts to measure the point-to-point message passing latency

and bandwidth. The test uses two MPI processes that repeatedly exchange messages.”44

LBW is configurable in the number of messages passed, message length, and whether the

communication is synchronous (blocking), or asynchronous (non-blocking). More details

of our LBW data collection are given in Appendix A.

C – MPI Performance Measurement and Modeling Procedure

1 – Data Collection and Measurement

The methods shown in Figure 3 and described subsequently were applied to the

collection and analysis of data from the various experimental systems:45

44 [Faulkner, 2005]
45 Ovals represent entry and exit points from the control flow. Rectangles represent procedures that are
nearly identical for each test machine. Diamonds represent procedures that may require customization for
each machine. Circles represent discontinuities in the graph, continue reading from corresponding symbol
in circle.

 31

Figure 3 – Measurement and Modeling Control Flow

Compile NPB
using mpiP

linkage.

Download
NPB from

web.

Configure
NPB for

each
machine.

Download,
compile,

and install
mpiP.

Write shell
scripts for

NPB.

Execute
scripts.

Collect and
store results.

α

α

Filter data.
Store and
import to

spreadsheet.

Spreadsheet
produces

QNM solver
inputs.

Create QNM
solver input

file and enter
into solver.

Output of solver
is entered back

into
spreadsheet.

Spreadsheet
analyzes data
and displays
graphically.

Researcher
verifies

spreadsheet
data.

Repeat as
necessary.

 32

• Downloaded the NAS Parallel benchmarks from the NAS website.46

• Configuration files for the NAS PB were modified for each machine. Minor

errors in benchmark code were corrected to prevent compiler errors and select

the proper NPB timing routines, as provided by NAS.

• Downloaded, compiled, and installed mpiP from LLNL website.47 48

• The NAS PB executables were compiled using mpiP linkage to provide

detailed analysis of MPI calls and timings.

• Shell scripts were written for each suite of NAS PB tests to provide proper

environment setup and to ease execution.

• The shell scripts were executed, and the resultant data files containing MPI

call and timing information were captured and stored in a directory.

• The mpiPfilter program was run on the data to extract relevant timing and call

information, as well as ease data file parsing.

• The resultant output files were also stored and imported into the NPB

spreadsheet for storage and ease of calculation.

• Calculations in the NPB spreadsheet produced inputs for the QNM solver

using imported data from the data files above, and created prototype

execution commands for inMaker.

• QNM solver input files were created using inMaker, and fed to the solver

using single class MVA batch mode.

46 http://www.nas.nasa.gov/Software/NPB/
47 http://www.llnl.gov/CASC/mpip/
48 MpiP is also available through SourceForge.

 33

• Outputs from the QNM solver were copied back into the NBP spreadsheet,

which performed error analysis on the modeled vs. measured inputs and

graphically displayed the results.

• The final NPB spreadsheet was then inspected for continuity, alignment of

data, error, and other anomalies to ensure the spreadsheet was functioning

properly, that all necessary data was collected, and that all application

executions terminated properly.

• As necessary, the model was corrected to ensure the above states held true

and the QNM solver was rerun on the newly corrected data.

2 – QNM Model and Mean Value Analysis

The QNM models were solved using the single class mean-value analysis, as shown in

Equation 1, which is easy to parameterize and eliminates complexity due to multiple

classes of messages and load dependent servicing times.

Parameters for the QNM model were determined as follows:

• The number of centers is the number of nodes allocated to solving the problem,

plus two. The additional nodes represent the switch and the time spent on

computation in the CPU. The switch and CPU are parameterized as delay

centers, as they generally do not queue messages for servicing, whereas the

centers representing the MPI message servicing nodes are parameterized as

queueing centers, as they may have multiple messages waiting on servicing.

• The number of customers is equal to the number of computational nodes in the

system.

 34

• The delay for the switch (when used) is determined by dividing the average

message size by the bandwidth passing through the system and adding the

latency. This approximation avoids the complexity of having multiple classes

of servicing for various messages sizes. For our purposes, this value was

unused and explicitly set to zero, as this produced better comparison between

the modeled and measured results. What switch delay does exist is included in

the service time for the queueing centers (i.e. the MPI and interconnect stack).

Using a nonzero switch delay center results in counting the switch delay twice

in the baseline model.

• The delay for the CPU is the total application time (TTS) minus the total time

in MPI calls, with the result divided by the number of messages in the system.

• The aggregate service demand for the queueing MPI nodes is the total time

spent in MPI calls minus the time spent in MPI_Wait. The product of the

number of computational nodes and the number of messages then divides this

value in the system to produce the input for the MVA algorithm. Since the

NPB CG benchmark only uses point-to-point communication, MPI_Wait

captures all the explicit wait time.

• The MVA was solved for queue length, residence time, and throughput.

 35

D – Correlating NAS-PB CG Classes to Numeric Problem Sizes

Because serial TTS (i.e. execution time for a single processor) could be determined for

NPB, and is a reasonable work metric (i.e. measure of program size),49 we attempted to

find parameters in the NPB output files that would provide for a similar work metric that

was machine independent. We did this because we were unable to determine an

appropriate work metric from the NPB input files. As a step toward our work metric, we

noted that message size and number of messages remained constant for a given allocation

of processors for a given problem class, as was expected. Trial and error search then

gave us the work metric in Equation 2 below.

Class/
P S W A B C D

1 8 8 8 8 8
2 2,776 13,862 27,720 148,557 297,109
4 2,776 13,862 27,720 148,557 297,109
8 1,191 5,937 11,870 63,587 127,169

16 1,191 5,937 11,870 63,587 127,169 1,271,675
32 558 2,772 5,540 29,661 59,318 593,138
64 558 2,772 5,540 29,661 59,318 593,138

128 271 1,335 2,665 14,259 28,513 285,084
256 271 1,335 2,665 14,259 28,513 285,084
512 135 653 1,302 6,953 13,900 138,957

Table 1 – Message Sizes for NPB CG

49 [Grama, 2003]

 36

Class/
P S W A B C D

1 1 1 1 1 1
2 3,152 3,152 3,152 15,752 15,752
4 6,304 6,304 6,304 31,504 31,504
8 22,088 22,088 22,088 110,408 110,408

16 44,176 44,176 44,176 220,816 220,816 294,416
32 126,272 126,272 126,272 631,232 631,232 841,632
64 252,544 252,544 252,544 1,262,464 1,262,464 1,683,264

128 656,768 656,768 656,768 3,283,328 3,283,328 4,377,728
256 1,313,536 1,313,536 1,313,536 6,566,656 6,566,656 8,755,456
512 3,233,792 3,233,792 3,233,792 16,166,912 16,166,912 21,555,712

Table 2 –Number of Messages for NPB CG

Class/
P S W A B C D

2 24.284E+9 605.671E+9 2.422E+12 347.632E+12 1.39E+15
4 48.569E+9 1.211E+12 4.844E+12 695.265E+12 2.781E+15
8 31.343E+9 778.644E+9 3.112E+12 446.414E+12 1.786E+15

16 62.686E+9 1.557E+12 6.224E+12 892.828E+12 3.571E+15 476.117E+15
32 39.373E+9 970.474E+9 3.875E+12 555.35E+12 2.221E+15 296.097E+15
64 78.746E+9 1.941E+12 7.75E+12 1.111E+15 4.442E+15 592.194E+15

128 48.263E+9 1.171E+12 4.666E+12 667.552E+12 2.669E+15 355.792E+15
256 96.526E+9 2.342E+12 9.331E+12 1.335E+15 5.339E+15 711.583E+15
512 58.763E+9 1.381E+12 5.481E+12 781.499E+12 3.124E+15 416.218E+15
avg 54.284E+9 1.329E+12 5.301E+12 759.149E+12 3.036E+15 474.667E+15

Table 3 –Work Metric for NPB CG

agesNumberMesseMessageSizWM ⋅= 2
Equation 2– Formula for Parameter-Based Work Metric

Table 1, Table 2, and Table 3 above show the message sizes, number of messages and

new work metric for NPB CG. Equation 2 shows how the new work metric is derived.

Next, we plotted the serial runtimes and the new work metric together and examined

the tracking. While the work metric does exhibit some waviness, the resultant lines

follow a near-horizontal linear trend around the average. Spacing between the classes for

the new work metric was also consistent with spacing between the classes for serial

runtime. This is shown graphically in Figure 4 below. Because the new work metric

 37

seemed so consistent with time to solution, and because it is machine independent, we

adopted the average work metric for each class to replace time to solution. One

drawback of this process is that it required actually running the code to collect the data.

However, we did this as a matter of expediency, and detailed program analysis, possibly

done during coding, could eliminate this need.

Work Metric and Serial Run Time

1.E+10

1.E+11

1.E+12

1.E+13

1.E+14

1.E+15

1.E+16

1.E+17

1.E+18

1 10 100 1000

Number of Processors

W
or

k
M

et
ric

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Serial R
un Tim

e

S-WM W-WM A-WM B-WM C-WM D-WM S-SRT W-SRT
A-SRT B-SRT C-SRT D-SRT

Figure 4 – Work Metric and Serial Run Time

E – Determining Bandwidth and Latency

The first attempts at modeling utilized previously published bandwidth and latency

data.50 However, the data being utilized were for synchronous communication models

(where a blocking send is followed by a blocking receive), whereas NPB-CG utilizes an

asynchronous communication model (a non-blocking receive, followed by a blocking

50 [Faulkner, 2005]

 38

send, then a wait for the receive to complete). The LBW test was run on each machine to

capture latency and bandwidth values for inter/intra-node and synchronous/asynchronous

communications, as shown in Appendices A-2 and A-3. Configuration for LBW is as

follows:

• All tests contained the “-a” switch to obtain information for each MPI process.

• All tests were submitted to the batch partition requesting two nodes, one

processor per node active on our problem.

• For both bandwidth testing (“-B” switch) and latency testing (“-L” switch):

o Buffer sizes (“-b nnn” switch) assumed these values: 40, 400, 1,000,

10,000, 50,000, 100,000, 500,000, 1,000,000, 2,500,000, 5,000,000,

10,000,000, 15,000,000, and 20,000,000.

o All buffer sizes were tested in both synchronous and asynchronous

modes (“-s sync/async”).

o Test was repeated (“-n nnn”) so that the time for each run was

approximately 5 min. The repetition values were 15,000,000, 7,500,000

(x2), 5,000,000, 1,750,000, 700,000, 100,000, 45,000, 20,000, 7,500,

4,000, and 2,500.

 We ran each test on five separate occasions, with a minimum of 48 hours between

runs, in order to provide a random “typical” machine configuration. The mean value of

 39

the five runs for a given message size and communication model was determined, and

these values were utilized for the machine’s bandwidth and latency.51

To guard against the possibility of “outliers” in the LBW testing runs, we compared the

mean-over-five value mentioned above to the mean-over-three-of-five, where we

removed the highest and lowest values before calculating the mean value. We noted no

significant differences between these calculations, and accepted the mean-over-five as

being easiest to implement. Additionally, we also re-ran any test run where the shape of

the curve of the plotted data varied significantly from previous behavior (additional

peaks, valleys, or plateaus) as aberrant; such behavior is not what the average user under

normal operating circumstances would typically see. While it obviously is possible for

the system to produce such behavior, such an abnormal state could not be long

maintained, and is thus discounted and more appropriate results (where the shape of the

curve did not vary significantly) used instead.

The resultant bandwidth and latency data provide values that are typical for each

machine under normal operating conditions, and most closely approximate behavior the

average user would expect. For more detailed analysis and results, see Chapter VII,

Section A.

F – Determining mpiP Overhead

In order to determine the overhead associated with mpiP, the LBW test mentioned in

Section E above was run both with and without linkage to the mpiP libraries, using the

51 The LBW tests could not be run on the Keck Cluster, and are not considered in the following section.

 40

default MPI and mpiP configurations. Using Equation 3 below, we calculated and

examined the percentage of mpiP overhead.

mpiPno

mpiPnompiP
mpiP LBW

LBWLBW
OH

−

−−
=%

Equation 3 – Determining mpiP Overhead

As seen in Table 4, Table 5, Figure 5, Figure 6, Figure 7, and Figure 8, for large

messages (those over 10,000 bytes) mpiP on MCR has less than 2.25% overhead for

bandwidth and less than 2.5% overhead for latency in the inter-node asynchronous cases,

which most closely resemble the behavior of our test benchmark. Overhead on ALC is

even less, with large messages having less than 1.6% overhead for bandwidth and less

than 0.8% overhead for latency. These differences, though interesting, are secondary to

the focus of the current research and are reserved for future exploration. However, for

small messages (those under 10,000 bytes) mpiP overheads become quite significant, in

some cases exceeding 50%.

We collected no data for the Keck Cluster, as we could not compile or execute the

LBW routines in the available time. However, as the Keck Cluster architecturally is

similar to both ALC and MCR, it is reasonable to assume we would obtain similar

results.

 41

Sync Async Sync Async Sync Async Sync Async
40 -20.21% -7.69% -17.40% -31.56% 26.41% 11.49% 27.35% 44.05%

400 -11.54% -1.75% -13.06% -26.18% 15.57% 2.49% 20.22% 32.63%
1,000 -11.48% -3.76% -11.74% -16.75% 13.94% 2.61% 17.86% 18.43%

10,000 -6.83% -11.47% -1.48% -10.22% 8.92% 12.64% 7.35% 10.34%
50,000 -2.78% -3.38% 4.10% -1.99% 6.24% 5.34% 1.79% 2.37%

100,000 -7.28% -3.54% 4.63% -2.22% 13.87% 9.52% 1.57% 1.22%
500,000 1.95% 0.52% 5.46% -1.96% 1.34% -0.73% 0.75% 0.35%

1,000,000 2.01% 1.06% 5.58% -1.60% -0.12% -0.85% 0.67% 0.39%
2,500,000 2.80% 1.16% 5.61% -1.92% -0.31% -0.68% 0.58% 0.26%
5,000,000 2.02% 1.03% 5.62% -2.08% -0.59% -0.54% 0.45% 0.19%

10,000,000 2.01% 1.27% 5.63% -2.22% -0.23% 0.29% 0.37% -0.05%
15,000,000 2.97% 1.59% 5.70% -2.07% -0.77% 1.36% 0.40% -0.12%
20,000,000 3.22% 1.24% 5.72% -1.78% -1.47% -1.30% 0.39% -0.14%

Latency (µs)
Intra InterMessage

Size
Intra Inter

Bandwidth (10e6 B/s)

Table 4 – mpiP Overhead on MCR

mpiP Bandwidth Overhead

-35.00%

-30.00%

-25.00%

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

10.0E+0 100.0E+0 1.0E+3 10.0E+3 100.0E+3 1.0E+6 10.0E+6 100.0E+6

Message Size (Bytes)

B
an

dw
id

th
 O

ve
rh

ea
d

Intra-Sync Intra-Async Inter-Sync Inter-Async

Figure 5 – mpiP Bandwidth Overhead on MCR

 42

mpiP Latency Overhead

-10%

0%

10%

20%

30%

40%

50%

1.0E+0 10.0E+0 100.0E+0 1.0E+3 10.0E+3 100.0E+3 1.0E+6 10.0E+6 100.0E+6

Message Size (Bytes)

La
te

nc
y

O
ve

rh
ea

d

Intra-Sync Intra-Async Inter-Sync Inter-Async

Figure 6 – mpiP Latency Overhead on MCR

Sync Async Sync Async Sync Async Sync Async
40 -21.09% 12.33% -22.44% -33.24% 24.12% -11.99% 28.42% 50.09%

400 -9.88% -0.95% -16.40% -26.36% 11.81% 1.11% 18.12% 33.17%
1,000 -10.08% -3.57% -13.09% -20.86% 10.68% 2.53% 12.64% 25.09%

10,000 -7.28% -8.72% -6.40% -6.18% 7.00% 9.93% 4.64% 7.42%
50,000 -2.50% 3.33% -1.27% -1.54% 2.20% 3.50% 0.14% 0.55%

100,000 -8.29% -3.54% -2.10% -0.92% -1.66% 5.66% 0.21% 0.78%
500,000 -5.21% -3.83% -1.26% 0.17% 5.69% 2.74% -0.28% -0.27%

1,000,000 -3.59% -1.59% 0.10% 0.00% 3.79% 1.72% -1.08% 0.00%
2,500,000 -2.17% -3.51% -1.09% 0.14% 4.27% 1.66% -0.28% -0.01%
5,000,000 -1.71% -1.31% -0.10% 0.32% 1.91% 0.04% -1.25% 0.24%

10,000,000 -0.62% -1.20% 0.38% 0.35% 2.21% 0.34% -1.27% 0.24%
15,000,000 -0.33% -1.42% 0.32% 0.35% 3.35% 0.68% -1.27% 0.13%
20,000,000 -0.49% -0.67% 0.23% 0.35% 4.35% -0.56% -1.22% 0.11%

Latency (µs)
Intra InterMessage

Size
Intra Inter

Bandwidth (10e6 B/s)

Table 5 – mpiP Overhead on ALC

 43

mpiP Bandwidth Overhead

-40%

-30%

-20%

-10%

0%

10%

20%

10.0E+0 100.0E+0 1.0E+3 10.0E+3 100.0E+3 1.0E+6 10.0E+6 100.0E+6

Message Size (Bytes)

Ba
nd

w
id

th
 O

ve
rh

ea
d

Intra-Sync Intra-Async Inter-Sync Inter-Async

Figure 7 – mpiP Bandwidth Overhead on ALC

mpiP Latency Overhead

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

1.0E+0 10.0E+0 100.0E+0 1.0E+3 10.0E+3 100.0E+3 1.0E+6 10.0E+6 100.0E+6

Message Size (Bytes)

La
te

nc
y

O
ve

rh
ea

d

Intra-Sync Intra-Async Inter-Sync Inter-Async

Figure 8 – mpiP Latency Overhead on ALC

 44

Note the complexity of the above graphs. There is no obvious explanation for either

the complexity or bumpiness of the results (though one possibility is that inter-node

communication is less bumpy than intra-node communication due to caching effects) and,

as this was secondary to the focus of the research, was not explored further but left for

future research.

 45

IV – Results and Analysis

A – Overview and General Comments

To establish the predictive capabilities of QNM, it was first necessary to establish a

mathematical relationship between the various classes (sizes) of problem and the

corresponding runtimes for those classes. We outline the technical details for this

procedure in Chapter III, Section D. This section is concerned with analysis of the

procedure outlined in the previous section, the results of which are contained in Sections

B – D below.

We ran sample benchmarks, in particular NPB CG, on all target systems for each class

and available processor allocation. We used these results to understand the behavior of

actual machines-in-execution, as well as to provide target values for the model. Data

were collected apriori to modeling due to the often-lengthy amount of time it took for the

experimental benchmarks to schedule and execute on the target machines.

In general, comparisons of the results were good. However, careful examination of the

graphical results, shown separately for each machine below, shows unusual behavior for

small problem sizes (classes S, W, and A) as the number of processors allocated to

solving the problem increases. In these cases, runtime values begin to slip off their

previous trend-lines, creating a “hook” in the runtime plot. We explore this effect in

more detail in Sections B - D.

Following collection and analysis of actual machine performance, we ran QNM models

on the collected data and graphed the data, the results of which are also contained in

 46

Sections B –D below. Comparison of the modeled versus the measured performance is

contained in Section E following.

B – MCR

This section contains graphical analysis of the data collected from MCR.

1 –Runtimes With Respect to Class

Note in Figure 9 the points where the application begins to show non-optimal

performance. This nadir, at 16 processors for class S, 64 for class W, and 256 for class

A, indicates the processor allocation beyond which TTS degrades rather than improves

with the addition of more computational nodes.

Measured Application Times by Class

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

Number of Processors

Ap
pl

ic
at

io
n

Ti
m

e
(s

)

S-Measured
W-Measured
A-Measured
B-Measured
C-Measured
D-Measured

Figure 9 – MCR Measured Runtimes With Respect to Class

Note that Figure 10 is very similar to the plot in Figure 9.

 47

Modeled Application Times by Class

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

Number of Processors

Ap
pl

ic
at

io
n

Ti
m

e
(s

)

S-Modeled
W-Modeled
A-Modeled
B-Modeled
C-Modeled
D-Modeled

Figure 10 – MCR Modeled Runtimes With Respect to Class

2 –Runtimes with Respect to Processors Allocated

In Figure 11 the horizontal axis is the work metric (Chapter III, Section D), which

measures the problem size, from S on the left, to D on the right. Note in Figure 11 the

point where the application begins to show non-optimal performance, of a different sort

than in Subsection 2.1 above. This nadir, between classes W and A for 512 processors,

indicates the processor allocation is in a region which TTS degrades rather than improves

as the problem gets smaller.

 48

Measured Application Times by Number of Processors

0.01

0.1

1

10

100

1000

10000

1.E+10 1.E+11 1.E+12 1.E+13 1.E+14 1.E+15 1.E+16 1.E+17 1.E+18

Work Metric

A
pp

lic
at

io
n

Ti
m

e
(s

) 2-Measured
4-Measured
8-Measured
16-Measured
32-Measured
64-Measured
128-Measured
256-Measured
512-Measured

Figure 11 – MCR Measured Runtimes With Respect to Processors Allocated

Note that Figure 12 is very similar to the plot in Figure 11.

 49

Modeled Application Times by Number of Processors

0.01

0.1

1

10

100

1000

10000

1.E+10 1.E+11 1.E+12 1.E+13 1.E+14 1.E+15 1.E+16 1.E+17 1.E+18

Work Metric

A
pp

lic
at

io
n

Ti
m

e
(s

) 2-Modeled
4-Modeled
8-Modeled
16-Modeled
32-Modeled
64-Modeled
128-Modeled
256-Modeled
512-Modeled

Figure 12 – MCR Modeled Runtimes With Respect to Processors Allocated

3 –Runtimes with Respect to Processors Allocated and Class Size

These graphs are a combination of the above four graphs, and shows the above non-

optimal application behavior as valleys along the various contours.

 50

Figure 13 – MCR Measured Runtimes With Respect to Processors Allocated and Class
Size

Figure 14 – MCR Modeled Runtimes With Respect to Processors Allocated and Class
Size

 51

C – ALC

This section contains graphical analysis of the data collected from ALC.

1 –Runtimes With Respect to Class

Note the point in Figure 15 where the application begins to show non-optimal

performance. This nadir, at 16 processors for class S, 64 for class W, and 128 for class

A, indicates the processor allocation beyond which TTS degrades rather than improves

with the addition of more computational nodes.

Measured Application Times by Class

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

Number of Processors

Ap
pl

ic
at

io
n

Ti
m

e
(s

)

S-Measured
W-Measured
A-Measured
B-Measured
C-Measured
D-Measured

Figure 15 – ALC Measured Runtimes With Respect to Class

Note that Figure 16 is very similar to the plot in Figure 15.

 52

ModeledApplication Times by Class

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

Number of Processors

A
pp

lic
at

io
n

Ti
m

e
(s

)

S-Modeled
W-Modeled
A-Modeled
B-Modeled
C-Modeled
D-Modeled

Figure 16 – ALC Modeled Runtimes With Respect to Class

2 –Runtimes with Respect to Processors Allocated

Note the point in Figure 17 below class W for 32 or more processors, indicating the

processor allocation is in a region where TTS flattens out rather than improves, as the

problem gets smaller.

 53

Measured Application Times by Number of Processors

0.01

0.1

1

10

100

1000

10000

1.E+10 1.E+11 1.E+12 1.E+13 1.E+14 1.E+15 1.E+16 1.E+17 1.E+18

Work Metric

A
pp

lic
at

io
n

Ti
m

e
(s

)

2-Measured
4-Measured
8-Measured
16-Measured
32-Measured
64-Measured
128-Measured
256-Measured

Figure 17 – ALC Measured Runtimes With Respect to Processors Allocated

Note Figure 18 is very similar to the plot in Figure 17.

 54

Modeled Application Times by Number of Processors

0.01

0.1

1

10

100

1000

10000

1.E+10 1.E+11 1.E+12 1.E+13 1.E+14 1.E+15 1.E+16 1.E+17 1.E+18

Work Metric

A
pp

lic
at

io
n

Ti
m

e
(s

)

2-Modeled
4-Modeled
8-Modeled
16-Modeled
32-Modeled
64-Modeled
128-Modeled
256-Modeled

Figure 18 – ALC Modeled Runtimes With Respect to Processors Allocated

3 – Runtimes with Respect to Processors Allocated and Class Size

These graphs are a combination of the above four graphs, and shows the above non-

optimal application behavior as valleys along the various contours.

 55

Figure 19 – ALC Measured Runtimes With Respect to Processors Allocated and Class
Size

Figure 20 – ALC Modeled Runtimes With Respect to Processors Allocated and Class
Size

 56

D – Keck Cluster

This section contains graphical analysis of the data collected from the Keck Cluster.

1 – Runtimes With Respect to Class

Note the point in Figure 21 where the application begins to show non-optimal

performance. This nadir, at 16 processors for class S, indicates the processor allocation

beyond which TTS degrades rather than improves with the addition of more

computational nodes.

Modeled vs. Measured Application Times

0.1

1

10

100

1000

10000

1 10 100

Number of Processors

Ap
pl

ic
at

io
n

Ti
m

e
(s

)

S-Measured
W-Measured
A-Measured
B-Measured
C-Measured
D-Measured

Figure 21 – Keck Cluster Measured Runtimes With Respect to Class

Note that Figure 22 is very similar to the plot in Figure 21.

 57

Modeled vs. Measured Application Times

0.1

1

10

100

1000

10000

1 10 100

Number of Processors

Ap
pl

ic
at

io
n

Ti
m

e
(s

)

S-Modeled
W-Modeled
A-Modeled
B-Modeled
C-Modeled
D-Modeled

Figure 22 – Keck Cluster Modeled Runtimes With Respect to Class

2 – Runtimes with Respect to Processors Allocated

Note the point in Figure 23 at class S for 32 processors, indicating the processor

allocation is in a region where TTS begins to flatten, as the problem gets smaller.

 58

Modeled vs. Measured Application Times

0.1

1

10

100

1000

10000

1.E+10 1.E+11 1.E+12 1.E+13 1.E+14 1.E+15 1.E+16 1.E+17 1.E+18

Work Metric (TTSSerial: s)

A
pp

lic
at

io
n

Ti
m

e
(s

)

2-Measured
4-Measured
8-Measured
16-Measured
32-Measured

Figure 23 – Keck Cluster Measured Runtimes With Respect to Processors Allocated

Note that Figure 24 is very similar to the plot in Figure 23.

 59

Modeled vs. Measured Application Times

0.01

0.1

1

10

100

1000

10000

1.E+10 1.E+11 1.E+12 1.E+13 1.E+14 1.E+15 1.E+16 1.E+17 1.E+18

Work Metric (TTSSerial: s)

A
pp

lic
at

io
n

Ti
m

e
(s

)

2-Modeled
4-Modeled
8-Modeled
16-Modeled
32-Modeled

Figure 24 – Keck Cluster Modeled Runtimes With Respect to Processors Allocated

3 – Runtimes with Respect to Processors Allocated and Class Size

These graphs are a combination of the above four graphs, and shows the above non-

optimal application behavior as valleys along the various contours.

 60

Figure 25 – Keck Cluster Measured Runtimes With Respect to Processors Allocated and

Class Size

Figure 26 – Keck Cluster Modeled Runtimes With Respect to Processors Allocated and

Class Size

 61

E – Analysis of QNM Results as Compared to Measured Results

1 – Relative Error

Presented in this section are the relative errors of the QNM model as compared to the

measured system performance. The relative error was determined using Equation 4

below.

observed

observedQNM

WCT
WCTWCT

rorRelativeEr
−

=%

Equation 4 – Determining Relative Error in QNM Models

1.1 – Relative Error on MCR

Figure 27 and Table 6 below show the relative error of the QNM model for MCR.

Values range from -50.77% to 24.23% with an average error of 2.41%. All but two of

the error calculations fall within the 10 – 30% accuracy range that we typically expect

from QNM models. The two anomalous predictions occur when we run very small

problems over very large processor allocations, which are atypical of normal MPI

programming, and thus are situations we are unlikely to encounter during normal use.

Note that the overhead numbers in Table 6 vary greatly in both directions, even within

the same class. Additionally, these values are not monotonic, as might be expected. We

speculate that overlap between computation and communication decreases the measured

run times, as calculated by our methods. Our QNM technique does not consider this

overlap, producing a higher prediction. These higher predictions are in areas where the

 62

amount of communication and computation overlap is almost equal; therefore, overlap is

more of an issue. This will be addressed in future research.

Modeled vs. Measured Application Times

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

Number of Processors

A
pp

lic
at

io
n

Ti
m

e
(s

)

S-Measured
S-Modeled
W -Measured
W -Modeled
A-Measured
A-Modeled
B-Measured
B-Modeled
C-Measured
C-Modeled
D-Measured
D-Modeled

Figure 27 – MCR Measured and Modeled Runtimes With Respect to Class Size

2 4 8 16 32 64 128 256 512
S 54.284E+9 -3.00% -2.99% 15.24% 24.23% 15.09% 12.36% -3.86% -14.03% -50.77%

W 1.329E+12 -3.14% -6.44% -1.57% 7.68% 16.67% 21.12% 5.40% -3.08% -30.57%
A 5.301E+12 -1.53% -5.55% -3.93% -0.62% 2.42% 13.10% 11.56% 11.56% -15.39%
B 759.149E+12 -0.14% -3.50% -1.10% -0.91% 6.36% 15.96% 8.56% 16.49% 10.06%
C 3.036E+15 -0.02% -1.04% 1.25% 1.43% 1.96% 10.77% 14.44% 11.90% 4.54%
D 474.667E+15 -1.85% -0.63% 0.52% 1.20% 3.32% 13.30%

Class

Table 6 – Relative Error of QNM on MCR

1.2 – Relative Error on ALC

Figure 28 and Table 7 below shows the relative error of the QNM model for ALC.

Values range from -10.86% to 22.50% with an average error of 3.61%. All of the error

calculations fall within the 10 – 30% accuracy range that is typically expected from QNM

models.

 63

Note that the overhead numbers in Table 7 vary greatly in both directions, even within

the same class, as with MCR. Additionally, these values are not monotonic, as might be

expected.

Modeled vs. Measured Application Times

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

Number of Processors

Ap
pl

ic
at

io
n

Ti
m

e
(s

)

S-Measured
S-Modeled
W -Measured
W -Modeled
A-Measured
A-Modeled
B-Measured
B-Modeled
C-Measured
C-Modeled
D-Measured
D-Modeled

Figure 28 – ALC Measured and Modeled Runtimes With Respect to Class Size

2 4 8 16 32 64 128 256
S 53.724E+9 -4.34% -1.25% 11.79% 20.43% 9.60% -2.17% -2.06% -8.30%

W 1.322E+12 -2.80% -6.14% -3.51% 10.15% 16.91% 19.51% 7.83% 1.34%
A 5.278E+12 -1.67% -5.75% -4.99% -0.23% 2.59% 13.79% 10.58% 7.80%
B 756.356E+12 -0.29% -2.29% -0.78% 1.39% 6.91% 18.14% 7.33% 15.00%
C 3.025E+15 -0.01% -0.87% -0.42% 1.38% 4.21% 10.99% 14.85% 22.50%
D 486.357E+15 -1.16% -2.54% -7.07% -10.86% -2.89%

Class

Table 7 – Relative Error of QNM on ALC

 64

1.3 – Relative Error on the Keck Cluster

Figure 29 and Table 8 below shows the relative error of the QNM model for the Keck

Cluster. Error values range from -63.76% to -0.02% with an average error of -10.73%.

All but four of the error calculations fall within the 10 – 30% accuracy range that we

typically expect from QNM models. The four anomalous predictions, again, occur when

we run very small problems over larger processor allocations, which is atypical for MPI

usage. The Keck Cluster is a much smaller machine than either MCR or ALC, resulting

in longer computation times and slower network data transfers.

Modeled vs. Measured Application Times

0.01

0.1

1

10

100

1000

10000

1 10 100

Number of Processors

A
pp

lic
at

io
n

Ti
m

e
(s

)

S-Measured
S-Modeled
W -Measured
W -Modeled
A-Measured
A-Modeled
B-Measured
B-Modeled
C-Measured
C-Modeled
D-Measured
D-Modeled

Figure 29 – Keck Cluster Measured and Modeled Runtimes With Respect to Class Size

 65

2 4 8 16 32
S 41.251E+9 -5.39% -18.92% -49.26% -59.41% -63.76%

W 1.025E+12 -0.23% -2.50% -13.76% -25.87% -39.35%
A 4.095E+12 -0.20% -1.06% -2.30% -3.32% -22.24%
B 587.498E+12 -0.08% -0.60% -0.70% -2.07% -2.63%
C 2.35E+15 -0.02% -1.04% -0.89% -1.32% -1.84%
D 296.097E+15 -0.63% -0.63% -0.63% -0.63% -0.63%

Class

Table 8 – Relative Error of QNM on the Keck Cluster

2 - Summary

QNM, indeed, does provide a reasonable means of determining times to solution for

the various experimental systems. Only six of the modeled values fell out of the 10 –

30% typical accuracy range of QNM, all of which were under atypical run conditions.

The average relative errors of 2.41% on MCR, 3.61% on ALC, and -10.73% on the Keck

Cluster are all typical of the results expected from QNM, and show that QNM is a useful

tool for determining the TTS for large-scale problems on clustered high-performance

computers.

 66

V – Problems Encountered and Further Research

A – Regionalization and Trending

Many components of cluster computers exhibit piecewise linear behavior. For

example, both the performance of the system switching mechanism and the caching

hierarchy exhibit this type of behavior. For each of these, a plot of the performance can

be divided into regions at the inflection points of the graph, and within each region, a

particular linear trend dominates. This trend provides reasonably accurate interpolation

for intermediate values. This section explores initial attempts to examine if clusters

exhibit this piecewise linear behavior.

1 – Baseline Analysis and Results

Examination of the graphs in Chapter IV, Section B (for instance, Figure 9) above

indicates that the application exhibits different behavior at certain critical processor

allocations for each class. We note this differing behavior by the U-shaped structure of

the runtimes for small classes. Typically, we expect the application to produce shorter

and shorter runtimes as the number of processors allocated to solving a problem

increases. However, beyond the critical point, the application actually requires more and

more time to derive a solution, which is counter-intuitive. To account for this counter-

intuitive behavior we explored a regime structure to determine what metrics were usable

to predict the movement from the intuitive, typical application performance region to the

counter-intuitive, undesired application performance region. We used trendlining over

small subsets of the data to attempt prediction of these critical processor allocations that

 67

mark the boundary between regions. Results indicate this could be a useful metric for

determining where these regions lie and that further investigation is required.52

2 – Percent CPU Utilization as Regime Change Metric

Initial analysis of the measured results shows that percent CPU utilization may be a

good indicator for movement from the typical to the atypical regions of application

behavior. As more processors are allocated to a problem, the percentage of the CPU time

used to solve that problem steadily decreases, as more system time is needed for network

traffic. When this utilization drops below 70 – 80 %, the application moves into the

atypical behavior region, and begins to take longer to derive solutions than smaller

processor allocations for the same problem. To predict where this nadir occurs without

having to run the program, we applied predictive linear trendlines for one, two, four, and

eight processors to the data and extrapolated until the trendlines crossed the critical

barrier of 80% (MCR) and 70% (ALC), where the application begins the atypical

behavior described above. The resulting trendline equation, when solved for the number

of processors at the critical CPU utilization percentage and rounded up to the next power

of two, provides a good estimate of the number of processors at the critical allocation

point. We analyzed classes S, W, and A, as these were the only classes exhibit such

atypical application behavior in our runs.

52 Due to the nature of the system, CPU utilization data was not able to be collected for the Keck

Cluster, and will not be discussed in this section.

 68

2.1 – MCR Percent CPU Utilization and Trends

The following graphs and tables show the results of applying this trending analysis to

MPI runtimes on MCR.

% CPU Usage By Class

y = -0.006x + 0.859
R2 = 0.3922

y = -0.0028x + 0.9376
R2 = 0.3651

y = -0.0054x + 0.9918
R2 = 0.9931

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

1 10 100 1000

Number of Processors

%
C

PU
 U

sa
ge

S

mini-S

W

mini-W

A

mini-A

B

C

D

Linear (mini-S)

Linear (mini-W)

Linear (mini-A)

Regime Change

Optimal

Non-Optimal

Figure 30 – MCR Percent CPU Utilization and Trendlines

Class Trendline Equation Predicted
Critical CPU
Allocation

Predicted
Critical CPU
Allocation

(Rounded Up)

Actual
Measured

Critical CPU
Allocation

S 859.0006.0 +−= xy 10 16 16
W 9376.00028.0 +−= xy 49 64 64
A 9918.00054.0 +−= xy 36 64 256

Table 9 – MCR Trendline Equations, Predictions, and Measured Results

For classes S and W, the predictive trendline accurately predicts the critical CPU

allocation beyond which the application exhibits atypical behavior. For class A, the

result from the trendline equation is within two processor allocations of the critical

 69

allocation, indicates a leveling-off of the runtimes, and shows the entrance into atypical

application behavior area.

2.2 – ALC Percent CPU Utilization and Trends

The following graphs and tables show the results of applying this trending analysis to

MPI runtimes on ALC.

% CPU Usage By Class

y = -0.0005x + 0.7812
R2 = 0.0123

y = -0.0074x + 0.9342
R2 = 0.9415

y = -0.0034x + 0.9839
R2 = 0.6523

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Number of Processors

%
C

PU
 U

sa
ge

S
mini-S
W
mini-W
A
mini-A
B
C
D
Linear (mini-S)
Linear (mini-W)
Linear (mini-A)

Regime Change

Optimal Region

Non-Optimal Region

Figure 31 – ALC Percent CPU Utilization and Trendlines

Class Trendline Equation Predicted
Critical CPU
Allocation

Predicted
Critical CPU
Allocation

(Rounded Up)

Actual
Measured

Critical CPU
Allocation

S 7812.00005.0 +−= xy 168 256 16
W 9342.00074.0 +−= xy 32 32 64
A 9839.00034.0 +−= xy 84 128 128

Table 10 – ALC Trendline Equations, Predictions, and Measured Results

 70

For class A the predictive trendline accurately predicts the critical CPU allocation

beyond which the application exhibits atypical behavior. For class W, the result from the

trendline equation is within one processor allocation of the critical allocation, indicates a

leveling-off of the runtimes, and shows the entrance into the atypical application behavior

area. Class S, which exhibits nearly constant behavior on this system for very small

processor allocations, grossly over-predicts the CPU allocation for the critical region.

This suggests that while percentage CPU utilization may be a useful tool in predicting

entrance into the critical region, other tools are necessary to verify the results, particularly

if the application is exhibiting near constant behavior.

B – Model Input Parameterization and Trending

1 – Initial Analysis and Results

This thesis has focused on the viability of QNM to represent accurately system

behavior based on collected results from actual program execution. However, QNM

would be much more useful if it were able to predict system performance without having

to perform actual program runs and analyze the collected performance data. One possible

means of doing this would be to execute small versions of the problem over small

processor allocations and estimate the values for combinations of larger versions of the

problem and larger processor allocations. We examined several methods of deriving

these estimates, mostly with disappointing results. However, one method, predictive

trendlining of the components of execution time, shows promise, and is the focus of this

section.

 71

To understand better the program execution times, they were broken down into various

components of execution time, using data gathered by mpiP or calculated by the model.

In particular, three components were highly important: MPI Active Time, MPI Wait

Time, and Compute Time. MPI Wait Time is the amount of time the computer spends

inside MPI calls, but not working actively on that call (i.e. blocked for I/O). This was

determined by taking the MPI Wait readings directly from the mpiP output. MPI Active

Time is the amount of time the computer spends inside MPI calls and actively working

on processing those calls (i.e.: executing code in the MPI routines). We determined this

by taking the total time reported in MPI calls (MPI_Time) and subtracting the MPI_Wait

time. Compute Time is the amount of time the computer spends outside any MPI calls

(i.e.: is not within an MPI routine, or blocked for an MPI routine). This was determined

by subtracting the total MPI Time from the total Application Time. In the following

graphs, the darker solid triangles represent data collected from the experimental systems,

while the lighter hollow squares represent data calculated from the QNM model. The

experimental computation values equate to the modeled compute time, whereas MPI

Active uses the same label for both experimental and modeled values.

2 – MCR Analysis and Results

We plotted the various components of creating a QNM model for MCR, samples of

which we show below. For both the Computation and MPI Active components, we fit a

power trendline to the data, creating a linear correlation in the logarithmic domain.

Strong R2 values (> 0.9) for the trend of MPI Active time suggest that MPI Active is a

strong candidate for prediction using trendlines. Weak R2 values (< 0.9) for the trend of

 72

Computation time suggest that Computation is not a good candidate for prediction using

trendlines. We ruled out trending of MPI Wait on visual inspection.

Modeled vs. Measured Aggregate Component Times

y = 0.0537x0.8465

R2 = 0.9466

y = 0.0337x1.137

R2 = 0.9994

0.01

0.1

1

10

100

1000

1 10 100 1000

Number of Processors

Ti
m

e
(s

)

Computation
MPI Active

MPI W ait
Compute Time

MPI Active
MPI Contention
Power (Computation)

Power (MPI Active)

Figure 32 – MCR CG Class S Component Times with Trendline

 73

Modeled vs. Measured Aggregate Component Times

y = 0.1814x0.947

R2 = 0.9956

y = 3.4052x0.2403

R2 = 0.8015

0.001

0.01

0.1

1

10

100

1 10 100 1000

Number of Processors

Ti
m

e
(s

)

Computation
MPI Active

MPI W ait
Compute Time

MPI Active
MPI Contention
Power (MPI Active)

Power (Computation)

Figure 33 – MCR CG Class A Component Times with Trendline

Modeled vs. Measured Aggregate Component Times

y = 1865.3x-0.1746

R2 = 0.448

y = 44.645x0.5808

R2 = 0.9131

0.1

1

10

100

1000

10000

1 10 100 1000

Number of Processors

Ti
m

e
(s

)

Computation
MPI Active

MPI Wait
Compute Time

MPI Active
MPI Contention
Power (Computation)

Power (MPI Active)

Figure 34 – MCR CG Class C Component Times with Trendline

 74

3 – ALC Analysis and Results

We plotted the various components of creating a QNM model ALC, samples of which

we show below. For both the Computation and MPI Active components, we fit a power

trendline to the data, creating a linear correlation in the logarithmic domain. Strong R2

values (> 0.9) for the trend of MPI Active time suggest that MPI Active is a strong

candidate for prediction using trendlines. Weak R2 values (< 0.9) for the trend of

Computation time suggest that Computation is not a good candidate for prediction using

trendlines. We ruled out trending of MPI Wait was ruled out on visual inspection.

Modeled vs. Measured Aggregate Component Times

y = 0.8214x0.343

R2 = 0.798

y = 0.096x0.9936

R2 = 0.9956

0.001

0.01

0.1

1

10

100

1 10 100 1000

Number of Processors

Ti
m

e
(s

)

Computation
MPI Active
MPI W ait
Compute Time
MPI Active
MPI Contention
Power (Computation)
Power (MPI Active)

Figure 35 – ALC CG Class W Component Times with Trendline

 75

Modeled vs. Measured Aggregate Component Times

y = 11.201x0.7052

R2 = 0.9129

y = 257.15x0.0085

R2 = 0.005

0.1

1

10

100

1000

1 10 100 1000

Number of Processors

Ti
m

e
(s

)

Computation

MPI Active

MPI Wait
Compute Time

MPI Active

MPI Contention

Power (MPI Active)
Power (Computation)

Figure 36 – ALC CG Class B Component Times with Trendline

Modeled vs. Measured Aggregate Component Times

y = 222131x-0.1854

R2 = 0.7493

y = 1305.1x0.4792

R2 = 0.9394

1

10

100

1000

10000

100000

1000000

10 100 1000

Number of Processors

Ti
m

e
(s

)

Computation
MPI Active

MPI Wait
Compute Time

MPI Active
MPI Contention
Power (Computation)

Power (MPI Active)

Figure 37 – ALC CG Class D Component Times with Trendline

 76

4 – Keck Cluster Analysis and Results

We plotted the various components of creating a QNM model for the Keck Cluster,

samples of which we show below. For both the Computation and MPI Active

components, we fit a power trendline to the data, creating a linear correlation in the

logarithmic domain. Strong R2 values (> 0.9) for the trend of MPI Active time suggest

that MPI Active is a strong candidate for prediction using trendlines. Weak R2 values (<

0.9) for the trend of Computation time suggest that Computation is not a good candidate

for prediction using trendlines. We ruled out trending of MPI Wait on visual inspection

Modeled vs. Measured Aggregate Component Times

y = 1.2002x-0.1933

R2 = 0.2455

y = 0.0208x0.8238

R2 = 0.9802

0.0001

0.001

0.01

0.1

1

10

1 10 100

Number of Processors

Ti
m

e
(s

)

Computation

MPI Active

MPI W ait
Compute Time

MPI Active

MPI Contention

Power (Computation)
Power (MPI Active)

Figure 38 – Keck Cluster CG Class S Component Times with Trendline

 77

Modeled vs. Measured Aggregate Component Times

y = 0.8293x0.4522

R2 = 0.3784

y = 29.528x0.0195

R2 = 0.2549

0.001

0.01

0.1

1

10

100

1 10 100

Number of Processors

Ti
m

e
(s

)

Computation

MPI Active
MPI W ait

Compute Time

MPI Active
MPI Contention

Power (MPI Active)
Power (Computation)

Figure 39 – Keck Cluster CG Class A Component Times with Trendline

Modeled vs. Measured Aggregate Component Times

y = 6633.4x-0.1565

R2 = 0.7585

y = 62.525x0.6061

R2 = 0.8943

0.1

1

10

100

1000

10000

1 10 100

Number of Processors

Ti
m

e
(s

)

Computation

MPI Active
MPI Wait

Compute Time

MPI Active
MPI Contention

Power (Computation)
Power (MPI Active)

Figure 40 – Keck Cluster CG Class C Component Times with Trendline

 78

5 – Analysis Summary

The tables below give the power trendline equation and R2 for each of the machines

and classes as the problem scales strongly. We plan analysis and trending as the problem

scales weakly for the near future.

QNM models MPI Wait as MPI Contention, which we do not consider in the above

graphs or results below, since it is a value calculated from MPI Active by the QNM

solver. Compute Time, while showing some potential, was less than successful, with 15

of 17 results falling below the desirable R2 value of 0.9. MPI Active, on the other hand,

does show much promise for trend modeling, as all but four of the results fell above the

desired R2 value.

Machine MCR ALC Keck Cluster
Class S

9466.0
0537.0

2

8465.0

=

=

R
xy

9318.0
0612.0

2

7677.0

=

=

R
xy

2455.0
2002.1

2

1933.0

=

= −

R
xy

Class W

8339.0
7015.0

2

4348.0

=

=

R
xy

798.0
8214.0

2

343.0

=

=

R
xy

0124.0
2092.8

2

0079.0

=

=

R
xy

Class A

8015.0
0452.3

2

2403.0

=

=

R
xy

8623.0
749.3

2

1706.0

=

=

R
xy

2549.0
528.29

2

0195.0

=

=

R
xy

Class B

3988.0
9.212

2

0763.0

=

=

R
xy

005.0
15.257

2

0085.0

=

=

R
xy

572.0
3.906,1

2

1177.0

=

= −

R
xy

Class C

448.0
3.865,1

2

1746.0

=

= −

R
xy

6454.0
9.220,2

2

2559.0

=

= −

R
xy

7585.0
4.633,6

2

1565.0

=

= −

R
xy

Class D

7835.0
464,390

2

3171.0

=

= −

R
xy

7493.0
131,222

2

1854.0

=

= −

R
xy

Table 11 – Computation Trendline Equations, Predictions, and Measured Results

 79

Machine MCR ALC Keck Cluster
Class S

9994.0
0337.0

2

137.1

=

=

R
xy

9995.0
0313.0

2

1271.1

=

=

R
xy

9802.0
0208.0

2

8236

=

=

R
xy

Class W

9976.0
0971.0

2

0038.1

=

=

R
xy

9956.0
096.0

2

9936.0

=

=

R
xy

4774.0
2932.0

2

3144.0

=

=

R
xy

Class A

9956.0
1814.0

2

947.0

=

=

R
xy

9947.0
1772.0

2

9481.0

=

=

R
xy

3784.0
8293.0

2

4522.0

=

=

R
xy

Class B

9732.0
842.11

2

6831.0

=

=

R
xy

9129.0
201.11

2

7052.0

=

=

R
xy

9826.0
185.20

2

6777.0

=

=

R
xy

Class C

9131.0
645.44

2

5806.0

=

=

R
xy

9251.0
33.53

2

5326.0

=

=

R
xy

8943.0
525.62

2

6061.0

=

=

R
xy

Class D

8932.0
235,2

2

3955.0

=

=

R
xy

9394.0
1.305,1

2

4792.0

=

=

R
xy

Table 12 – MPI Active Trendline Equations, Predictions, and Measured Results

C – Class and Problem Sizes, Work Metric, and Data Set Size

As discussed in Chapter III above, a work metric was necessary to determine the

performance of NAS-PB as it relates to the benchmark problem size. Work metrics used

in this thesis are highly dependent on collecting data from the program in execution or

from detailed analysis of the code, and thus the communication patterns used to solve the

problem. While we explored various input parameters for NBP for potential worth as a

work metric, no metric or combination of metrics proved satisfactory. This indicates

further research, including reexamination of the NPB input parameters, to divorce the

work metric from both the need to analyze the program code and the collected observed

behavior. Determination of a data set size, which would include the amount of data in

memory, which is not dependent on such analysis and data collection is highly desirable

and should receive future consideration.

 80

D – Switch Delay versus No Switch Delay

Initial investigation included a delay server, as shown in Figure 1in Chapter I. In later

refinement of the model, we found that, for MCR and ALC, we realized better results

with the switch delay removed from the model. In practical terms, this means that we

recalculated the model with the switch delay set to zero. However, for the Keck Cluster,

this was not always the case.

1 – MCR Analysis

Following are sample graphs from MCR showing the measured values (blue), the

model excluding the switch delay (magenta), and the model including the switch delay

(green).

Modeled vs. Measured Application Times

0.01

0.1

1

10

1 10 100 1000

Number of Processors

A
pp

lic
at

io
n

Ti
m

e
(s

)

Measured Modeled Modeled - $ Delay

Figure 41 – MCR Class S Model Comparison

 81

Modeled vs. Measured Application Times

0.1

1

10

1 10 100 1000

Number of Processors

Ap
pl

ic
at

io
n

Ti
m

e
(s

)

Measured Modeled Modeled - $ Delay

Figure 42 – MCR Class A Model Comparison

Modeled vs. Measured Application Times

1

10

100

1000

10000

1 10 100 1000

Number of Processors

Ap
pl

ic
at

io
n

Ti
m

e
(s

)

Measured Modeled Measured - $ Delay

Figure 43 – MCR Class C Model Comparison

 82

2 – ALC Analysis

Following are sample graphs from ALC showing the measured values (blue), the

model excluding the switch delay (magenta), and the model including the switch delay

(green).

Modeled vs. Measured Application Times

0.01

0.1

1
1 10 100 1000

Number of Processors

A
pp

lic
at

io
n

Ti
m

e
(s

)

Measured Modeled Modeled - $ Delay

Figure 44 – ALC Class S Model Comparison

 83

Modeled vs. Measured Application Times

0.1

1

10

1 10 100 1000

Number of Processors

Ap
pl

ic
at

io
n

Ti
m

e
(s

)

Measured Modeled Modeled - $ Delay

Figure 45 – ALC Class A Model Comparison

Modeled vs. Measured Application Times

1

10

100

1000

10000

1 10 100 1000

Number of Processors

A
pp

lic
at

io
n

Ti
m

e
(s

)

Measured Modeled Modeled - $ Delay

Figure 46 – ALC Class C Model Comparison

 84

3 – Keck Cluster Analysis

Following are sample graphs from the Keck Cluster showing the measured values

(blue), the model excluding the switch delay (magenta), and the model including the

switch delay (green).

Modeled vs. Measured Application Times

0.01

0.1

1

10

1 10 100

Number of Processors

Ap
pl

ic
at

io
n

Ti
m

e
(s

)

Measured Modeled Modeled - $ Delay

Figure 47 – Keck Cluster Class S Model Comparison

 85

Modeled vs. Measured Application Times

0.1

1

10

100

1 10 100

Number of Processors

A
pp

lic
at

io
n

Ti
m

e
(s

)

Measured Modeled $ del

Figure 48 – Keck Cluster Class A Model Comparison

Modeled vs. Measured Application Times

100

1000

10000

1 10 100

Number of Processors

A
pp

lic
at

io
n

Ti
m

e
(s

)

Measured Modeled $ del

Figure 49 – Keck Cluster Class C Model Comparison

 86

4 – Final Analysis

The above results indicate more research as to why MCR and ALC show better

modeling without the switch delay and the Keck Cluster shows better modeling with the

switch delay. One possibility is that the data used to determine bandwidth and latency

consider the switch delay for MCR and ALC, therefore including the switching

characteristics in the model separately is redundant, and the data for the Keck Cluster

does not, thus necessitating the inclusion of an explicit switch delay in the model. This

and other possibilities will also be explored in the near future.

E – Measure and Predict Additional Systems

While the research preceding is sufficient to provide a proof-of-concept for QNM

modeling, the use of three test systems, each utilizing a Linux derivative, is insufficient to

prove the universality of the concept, and its applicability to either other operating

systems or different clusters. Therefore, the QNM modeling and data collection

procedure needs to be performed on additional computers and under different POSIX

derivatives. Candidates for new systems include BlueGene/L (Linux), Thunder (Linux),

and Berg/NewBerg (AIX), all machines at LLNL. Ultimately, the modeling procedure

should also be performed under non-POSIX systems as well.

F – Measure and Predict Additional Applications

As in Section E, above, the use of NPB-CG is sufficient for proof-of-concept testing,

but is not so for proof of universal application. Additional testing is required to expand

the QNM concept for more general use, beginning with application of QNM to the rest of

the NBP suite, in particular FT and BT. Once the NBP suite is fully analyzed, testing

 87

should continue with other programs, such as those mentioned in the benchmarking

review in Chapter II.

G – Refine Model for Interconnect

The current model of the interconnect between computation nodes assumes a flat

switching hierarchy and a single queueing node which incurs the total delay for the entire

switching process as well as any overhead incurred by the MPI and interconnect protocol

stacks. Continued examination of this switching model is necessary to improve accuracy

in the QNM modeling process.

 88

VI – Summary and Conclusion

Queueing Network Modeling is a possible solution to the modeling problems facing

modern high-performance computing. When given proper values for machine, network,

and program characteristics, QNM can accurately predict runtimes and performance on a

given machine with a given problem within the typically expected accuracy of QNM,

which is 10 – 30 %, as the data in Chapter IV clearly shows.

Apriori parameter prediction for the QNM model does show some level of difficulty, as

does prediction of the movement of MPI from typical (decreasing runtimes as processors

are added) to atypical (increasing run times as processors are added) behavior. However,

the QNM method itself, when these hurdles are overcome, promises to be a very

powerful tool in both the design and operation of high-performance computers. Possible

uses of QNM are batch system scheduling, cost-benefit analysis, and better

hardware/software engineering tools.

QNM is easy to understand, simple to parameterize (given above caveat about

determining the parameters), and mathematically uncomplicated. The QNM algorithm

itself is highly efficient and requires very little computation time to derive a solution. As

research continues to make headway on the difficulties mentioned in Chapter V, QNM

shows great promise to become one of the leading tools used for performance prediction

and modeling of large-scale high-performance computers.

 89

VII – Appendices

Appendix A – Latency and Bandwidth Data

1 – Keck Cluster

The Keck Cluster Latency and Bandwidth Curve in Figure 50 was constructed from

data available for MPICH-GM with GM 1.x from the Myrinet website.53 The

Myrinet documentation reports the tests were conducted using the PALLAS MPI

Benchmark Suite V2.2, MPI-1 part, Release 2.4.19. Figure 50 plots the results for the

PingPong benchmark, which is the most similar to the LLNL LBW benchmark, while

Table 13 gives raw data figures. We used the Myrinet values, as we had difficulty

modifying the LLNL LBW configuration and makefile for the Keck Cluster.

Ping Pong LBW

000.0E+0

50.0E+0

100.0E+0

150.0E+0

200.0E+0

250.0E+0

1 10 100 1000 10000 100000 1000000 1000000
0Number of Bytes

Ba
nd

w
id

th
 (M

B/
s)

000.0E+0

2.0E+3

4.0E+3

6.0E+3

8.0E+3

10.0E+3

12.0E+3

14.0E+3

16.0E+3

18.0E+3

20.0E+3

Latency (µs)

Bandwidth Latency

Figure 50 – Keck Cluster Latency and Bandwidth Curve

53 www.myrinet.com/myrinet/performance

 90

Number of Bytes Latency (µs) MBytes/s
0 8.05 0

1 8.14 0.12

2 8.14 0.23

4 8.18 0.47

8 8.29 0.92

16 8.61 1.77

32 8.77 3.48

64 9.03 6.76

128 12.08 10.1

256 14.83 16.45

512 17.89 27.29

1,024 24.31 40.17

2,048 36.88 52.95

4,096 55.67 70.17

8,192 95.27 82

16,384 116.47 134.15

32,768 186.97 167.14

65,536 327.91 190.6

131,072 609.82 204.98

262,144 1,174.19 212.91

524,288 2,303.11 217.1

1,048,576 4,561.19 219.24

2,097,152 8,898.06 224.77

4,194,304 17,573.37 227.62
 Table 13 – Keck Cluster Latency and Bandwidth Raw Data

2 – MCR

Figure 51 and Figure 52 plot the results for the LBW benchmark on MCR, while Table

14, Table 15, and Table 16 give raw data figures for bandwidth and latency. All model

calculations assume internode asynchronous communication, which is the case for the

NAS-PB CG benchmark using one processor per node.

The primary peak in the intranode bandwidth indicates the transfer rate from data in the

cache (cache hits); whereas the trailing plateau represents transfer rates from main

memory (cache misses). Internode communication is not nearly as influenced by caching

effects, and thus does not show the peaks noticed in intranode communication.

Bandwidth for asynchronous communication between nodes is much higher for large

 91

messages than bandwidth for synchronous communications, as much of the MPI time that

is taken making the non-blocking receive call can be processed in parallel with the send,

resulting in faster effective transfer rates. With synchronous communication, this call

overhead must be processed serially, and results in less data transfer.

Bandwidth

0

100

200

300

400

500

600

10.0E+0 100.0E+0 1.0E+3 10.0E+3 100.0E+3 1.0E+6 10.0E+6 100.0E+6

Message Size (Bytes)

B
an

dw
id

th
 (1

0e
6

B
/s

)

Intra-Sync Intra-Async Inter-Sync Inter-Async

Figure 51 – MCR Bandwidth Curve

 92

Latency

1

10

100

1,000

10,000

100,000

1.0E+0 10.0E+0 100.0E+0 1.0E+3 10.0E+3 100.0E+3 1.0E+6 10.0E+6 100.0E+6

Message Size (Bytes)

La
te

nc
y

(µ
s)

Intra-Sync Intra-Async Inter-Sync Inter-Async

Figure 52 – MCR Latency Curve

Sync Async Sync Async Sync Async Sync Async
40 3.9726 4.811 4.52 5.367 10.156 8.284 9.248 7.462

400 21.2054 20.8654 26.8278 31.5842 19.018 19.19 15.366 12.756
1,000 51.3228 51.1248 58.4316 66.9286 19.484 19.464 17.472 15.1

10,000 367.3934 420.6224 217.3698 262.9602 27.326 23.742 46.674 38.276
50,000 541.001 516.7798 292.6886 349.9428 95.33 94.266 172.334 145.336

100,000 429.87 426.9608 305.3328 377.29 245.994 226.008 330.388 270.578
500,000 290.3044 278.7632 317.5568 389.7146 1,768.266 1,818.076 1,586.674 1,292.112

1,000,000 281.9118 275.782 321.4458 394.5908 3,596.704 3,664.92 3,135.946 2,551.376
2,500,000 281.3806 277.3858 320.2202 392.3956 8,999.088 9,163.904 7,866.54 6,386.956
5,000,000 279.2804 276.9606 322.594 394.3502 18,062.88 18,170.846 15,595.29 12,702.79

10,000,000 280.022 277.765 322.8158 394.317 36,238.014 36,583.034 31,147.338 25,338.628
15,000,000 281.3414 278.8056 322.9122 395.3364 54,063.476 55,604.676 46,708.204 37,962.298
20,000,000 281.4702 278.1846 322.9528 395.4602 71,930.252 72,471.956 62,278.82 50,676.188

Latency (µs)
Intra InterMessage

Size
Intra Inter

Bandwidth (10e6 B/s)

 Table 14 – MCR Bandwidth and Latency Data with mpiP

 93

Sync Async Sync Async Sync Async Sync Async
40 0.08 0.0499 0.0403 0.0549 0.0586 0.0602 0.1763 0.1594

400 0.1465 0.1365 0.3491 0.5231 0.2119 0.088 0.2959 0.6359
1,000 0.4411 0.2852 0.6321 0.2549 0.0945 0.0716 0.1392 0.6904

10,000 3.6091 6.7215 0.8565 4.9315 0.194 0.2643 0.8376 1.8696
50,000 20.5529 30.4183 0.7395 4.6366 3.5088 3.9649 2.8005 6.6513

100,000 15.1763 15.1993 0.9421 2.2082 9.5574 13.8706 5.2579 13.6717
500,000 4.2409 5.3838 0.9253 4.8311 17.1772 37.7537 26.1131 66.6365

1,000,000 2.9619 2.4008 0.8293 5.2299 14.7897 34.077 51.919 126.925
2,500,000 4.1393 1.6986 0.7837 5.2014 47.0401 88.984 127.385 285.3246
5,000,000 3.2725 2.5598 0.8914 4.8161 86.3938 85.5093 217.7568 526.7418

10,000,000 3.3342 2.5839 0.8104 5.5202 251.3583 473.3553 379.5457 1,051.9095
15,000,000 3.6915 1.8167 0.7744 5.1362 446.9563 1,509.5416 559.5785 1,545.5308
20,000,000 3.592 3.0111 0.7757 5.2378 384.4657 736.5662 769.6137 1,949.7053

Message
Size

Bandwidth (10e6 B/s) Latency (µs)
Intra Inter Intra Inter

 Table 15 – MCR Bandwidth and Latency Standard Deviation with mpiP

Sync Async Sync Async Sync Async Sync Async
40 4.9790 5.2116 5.4722 7.8422 8.0340 7.4300 7.2620 5.1800

400 23.9704 21.2372 30.8588 42.7874 16.4560 18.7240 12.7820 9.6180
1,000 57.9796 53.1218 66.2044 80.3926 17.1000 18.9680 14.8240 12.7500

10,000 394.3124 475.0980 220.6384 292.8932 25.0880 21.0780 43.4780 34.6900
50,000 556.4770 534.8658 281.1688 357.0646 89.7320 89.4880 169.2960 141.9780

100,000 463.6230 442.6388 291.8298 385.8690 216.0260 206.3560 325.2840 267.3200
500,000 284.7436 277.3154 301.1294 397.4968 1,744.9640 1,831.3920 1,574.8600 1,287.5560

1,000,000 276.3436 272.8988 304.4656 400.9956 3,600.9660 3,696.4320 3,115.0380 2,541.5640
2,500,000 273.7220 274.1934 303.2010 400.0838 9,026.6940 9,227.0960 7,821.3160 6,370.4100
5,000,000 273.7434 274.1276 305.4150 402.7298 18,169.2860 18,268.9700 15,525.4200 12,678.5020

10,000,000 274.4934 274.2700 305.6090 403.2826 36,321.9920 36,477.1960 31,031.1220 25,351.2540
15,000,000 273.2296 274.4400 305.4950 403.7056 54,480.4920 54,859.9200 46,523.3720 38,008.9560
20,000,000 272.6774 274.7892 305.4882 402.6148 73,002.8640 73,425.4520 62,034.7640 50,747.5640

Latency (µs)
Intra InterMessage

Size
Intra Inter

Bandwidth (10e6 B/s)

 Table 16 – MCR Bandwidth and Latency Data without mpiP

3 – ALC

Figure 53 and Figure 54 plot the results for the LBW benchmark on ALC, while Table

17, Table 18, and Table 19 gives raw data figures for bandwidth and latency. All model

calculations assume internode asynchronous communication, which is the case for the

NAS-PB CG benchmark using one processor per node.

Notice that the bandwidth curves are similar to those produced by MCR. MCR and

ALC are very similar machines, and typically produce very similar results under the same

test conditions. This is due to the same caching and parallelization of non-blocking calls,

as explained above for MCR, and is what one would expect for a closely related

architecture.

 94

Bandwidth

0

100

200

300

400

500

600

700

10.0E+0 100.0E+0 1.0E+3 10.0E+3 100.0E+3 1.0E+6 10.0E+6 100.0E+6

Message Size (Bytes)

Ba
nd

w
id

th
 (1

0e
6

B/
s)

Intra-Sync Intra-Async Inter-Sync Inter-Async

Figure 53 – ALC Bandwidth Curve

Latency

1

10

100

1,000

10,000

100,000

1.0E+0 10.0E+0 100.0E+0 1.0E+3 10.0E+3 100.0E+3 1.0E+6 10.0E+6 100.0E+6

Message Size (Bytes)

La
te

nc
y

(µ
s)

Intra-Sync Intra-Async Inter-Sync Inter-Async

Figure 54 – ALC Latency Curve

 95

Sync Async Sync Async Sync Async Sync Async
40 5.9764 4.9004 6.6976 9.4790 6.7900 8.3400 5.9880 4.2120

400 25.1672 22.2102 36.3244 49.5768 15.7440 18.0320 11.0480 8.0980
1,000 61.4002 55.9302 77.3420 101.1014 16.3920 18.1380 13.0820 9.8840

10,000 419.0350 490.8522 241.1840 277.2746 23.8720 20.4620 41.6340 35.8120
50,000 599.6436 570.2200 298.9056 330.1730 85.0620 90.1880 167.5600 151.2780

100,000 511.2758 486.5640 311.5230 350.6030 202.9900 204.6100 321.7060 286.6160
500,000 327.8804 317.1758 320.7300 360.6768 1,523.0360 1,564.1020 1,562.5880 1,389.5660

1,000,000 318.6446 310.0188 318.1268 362.5292 3,141.6340 3,204.3580 3,155.8840 2,768.1380
2,500,000 312.9746 313.7038 322.9082 363.2792 7,896.4460 7,981.0700 7,760.1120 6,884.3620
5,000,000 312.2842 309.4832 319.3196 363.0602 15,909.9160 16,016.8440 15,745.2580 13,759.4960

10,000,000 310.8564 309.6742 319.4644 363.3290 32,148.1000 31,944.8020 31,471.9480 27,492.1060
15,000,000 308.8984 307.9560 319.6816 363.5872 47,715.7280 48,122.0200 47,196.8900 41,216.3540
20,000,000 307.2910 307.1802 319.8050 363.9454 64,053.6120 64,898.2160 62,880.0960 54,934.4660

Latency (µs)
Intra InterMessage

Size
Intra Inter

Bandwidth (10e6 B/s)

 Table 17 – ALC Bandwidth and Latency Data with mpiP

Sync Async Sync Async Sync Async Sync Async
40 0.032 0.0503 0.04 0.1179 0.0823 0.1475 0.0495 0.039

400 0.1699 0.0799 0.393 1.2765 0.2509 0.1205 0.0919 0.0799
1,000 0.3682 0.3505 0.8688 4.3586 0.1891 0.2298 0.1128 0.1193

10,000 1.333 14.7197 2.9456 0.2176 0.1568 0.1963 0.0559 0.2741
50,000 17.8992 11.8619 3.6162 3.6216 2.4068 7.5937 0.2303 1.0505

100,000 38.3299 28.7826 5.3652 3.2134 14.1377 20.0818 0.7493 2.808
500,000 4.9798 4.3932 4.3423 1.1353 15.7547 27.7759 5.79 11.7985

1,000,000 1.7375 1.9569 4.5587 1.6141 40.5172 22.3529 14.1584 18.8678
2,500,000 2.8588 2.4972 4.2779 1.4647 223.3009 166.0422 30.9485 57.9774
5,000,000 1.5366 2.7166 4.4801 1.632 103.8533 197.1605 89.7334 122.5853

10,000,000 2.8239 2.0616 2.5979 1.3202 835.4868 364.3385 187.661 277.9518
15,000,000 3.0522 5.1042 2.5242 1.2745 1,371.6671 302.5326 282.0873 410.9768
20,000,000 3.2741 6.7031 2.9886 1.3407 2,104.2451 1,791.2003 358.355 473.5005

Message
Size

Bandwidth (10e6 B/s) Latency (µs)
Intra Inter Intra Inter

 Table 18 – ALC Bandwidth and Latency Standard Deviation with mpiP

Sync Async Sync Async Sync Async Sync Async
40 4.7162 5.5048 5.1944 6.3286 8.428 7.34 7.69 6.322

400 22.6806 21.9986 30.369 36.5076 17.604 18.232 13.05 10.784
1,000 55.2124 53.9318 67.2184 80.013 18.142 18.596 14.736 12.364

10,000 388.5484 448.0326 225.7582 260.151 25.544 22.494 43.564 38.47
50,000 584.6418 589.1928 295.113 325.0722 86.936 93.344 167.796 152.11

100,000 468.8678 469.3568 304.9666 347.3834 199.63 216.192 322.374 288.846
500,000 310.8074 305.0264 316.6902 361.2918 1,609.666 1,606.944 1,558.15 1,385.78

1,000,000 307.2104 305.099 318.4326 362.5274 3,260.692 3,259.574 3,121.812 2,768.038
2,500,000 306.183 302.6926 319.3902 363.805 8,233.526 8,113.64 7,738.196 6,883.364
5,000,000 306.943 305.4298 319.0074 364.227 16,214.356 16,023.622 15,548.572 13,793.11

10,000,000 308.9394 305.952 320.674 364.5834 32,857.978 32,053.816 31,071.87 27,559.196
15,000,000 307.8658 303.582 320.7078 364.8706 49,314.166 48,447.148 46,596.196 41,270.232
20,000,000 305.7862 305.112 320.5504 365.2064 66,837.706 64,534.358 62,114.756 54,993.356

Latency (µs)
Intra InterMessage

Size
Intra Inter

Bandwidth (10e6 B/s)

 Table 19 – ALC Bandwidth and Latency Data without mpiP

 96

Appendix B – Sample NPB Spreadsheet

In this section, we present a sample of the NPB spreadsheet, which contains actual data

collected from MCR and is used to create the graphs and results presented in Chapter IV.

Spreadsheets for ALC and the Keck Cluster are similar, and work in the same manner.

The headings highlighted in black denote the major sections of the spreadsheet. The

Collected Values section contains mpiP and NAS-PB data collected from the machines

during the actual execution of the application, as provided by the mpiPfilter program, and

is the starting point for analysis. The Analysis Views section contains various analyses

of the collected data from different viewpoints of the system. The Utilization Views

section contains information about the utilization of various system resources. The

Network View section contains analysis of the network resource utilization. The Model

Views section contains two related subsections, Model Inputs, which collects the results

of the analyses in the previous sections as inputs for the QNM model, and Model

Outputs, which contain the results from running the QNM model on the provided inputs.

The Validation View section contains error analysis information used to validate the

model. The Graphical View section contains data from the previous sections, arranged to

make graphical display easier.

 97

Label Symbol Derivation Unit Type 1 2 4 8 16 32 64 128 256 512

Number of CPUs P - CPU IO
1 2 4 8 16 32 64 128 256 512

Application - - Text I
CG S CG S CG S CG S CG S CG S CG S CG S CG S CG S

Machine - - Text I
mcr2 mcr2 mcr2 mcr2 mcr2 mcr2 mcr2 mcr2 mcr2 mcr2

Run Date - - Date I
2/25/06 2/25/06 2/25/06 2/26/06 2/26/06 2/25/06 2/25/06 2/25/06 2/25/06 2/25/06

mpiP Collector
PID - - # I

11479 11815 21275 16955 16400 28358 4400 11260 26277 26042

Aggregate
Application Time App_Time - s I

216.8E-3 304.0E-3 375.8E-3 725.8E-3 1.388E+0 3.554E+0 7.516E+0 20.06E+0 44.28E+0 180.2E+0

Aggregate MPI
Time MPI_Time - s I

55.0E-6 94.62E-3 218.8E-3 497.4E-3 1.026E+0 2.762E+0 6.04E+0 16.68E+0 37.78E+0 164.6E+0

Aggregate
MPI_W AIT MPI_Wait - s A

000.0E+0 19.126E-3 71.193E-3 123.213E-3 240.903E-3 907.787E-3 2.192E+0 7.93E+0 20.49E+0 124.485E+0

Number of
Messages Sent M - msg A

1.0E+0 3.152E+3 6.304E+3 22.088E+3 44.176E+3 126.272E+3 252.544E+3 656.768E+3 1.314E+6 3.234E+6

Average Sent
Message Size L - B A

8.0E+0 2.776E+3 2.776E+3 1.191E+3 1.191E+3 558.4E+0 558.4E+0 271.083E+0 271.082E+0 134.802E+0

Average CPU
Utilization U*

CPU - # A
84.00% 87.70% 81.30% 81.65% 80.36% 79.41% 79.14% 72.57% 66.19% 60.68%

Average Elapsed
Time - - s A

428.0E-3 323.0E-3 343.5E-3 318.75E-3 344.125E-3 740.562E-3 1.047E+0 1.321E+0 1.592E+0 2.721E+0

Elapsed Time - - s I
214.0E-3 152.0E-3 94.0E-3 90.0E-3 88.0E-3 112.0E-3 116.0E-3 156.0E-3 174.0E-3 350.0E-3

Mop/s - - Mop/s I
310.826E+0 440.75E+0 715.166E+0 736.326E+0 769.882E+0 601.456E+0 569.858E+0 427.014E+0 387.826E+0 210.166E+0

Mop/s/process - - Mop/s I
310.826E+0 220.374E+0 178.792E+0 92.042E+0 48.116E+0 18.794E+0 8.904E+0 3.334E+0 1.516E+0 410.0E-3

Bandwidth BW (Linear Interpolation) B/s I
1.568E+6 122.319E+6 122.319E+6 84.908E+6 84.908E+6 52.715E+6 52.715E+6 30.273E+6 30.273E+6 17.045E+6

Latency Lat - s I
5.18E-6 5.18E-6 5.18E-6 5.18E-6 5.18E-6 5.18E-6 5.18E-6 5.18E-6 5.18E-6 5.18E-6

Collected Values

No Switch DelayParameters

NAS-PB

mpiP

Linux Time

Network Info.

 98

Application Time App_Time - s I
216.8E-3 304.0E-3 375.8E-3 725.8E-3 1.388E+0 3.554E+0 7.516E+0 20.06E+0 44.28E+0 180.2E+0

MPI Time MPI_Time - s I
55.0E-6 94.62E-3 218.8E-3 497.4E-3 1.026E+0 2.762E+0 6.04E+0 16.68E+0 37.78E+0 164.6E+0

Non-MPI Time Non_MPI App_Time - MPI_Time s C
216.745E-3 209.38E-3 157.0E-3 228.4E-3 362.4E-3 792.0E-3 1.476E+0 3.38E+0 6.5E+0 15.6E+0

MPI_WAIT MPI_Wait - s A
000.0E+0 19.126E-3 71.193E-3 123.213E-3 240.903E-3 907.787E-3 2.192E+0 7.93E+0 20.49E+0 124.485E+0

MPI Active Time MPI_Active MPI_Time - MPI_Wait s C
55.0E-6 75.494E-3 147.607E-3 374.187E-3 784.697E-3 1.854E+0 3.848E+0 8.75E+0 17.29E+0 40.115E+0

Application Time AT* App_Time / P s CIV
216.8E-3 152.0E-3 93.95E-3 90.725E-3 86.75E-3 111.063E-3 117.438E-3 156.719E-3 172.969E-3 351.953E-3

MPI Time MT* MPI_Time / P s CIV
55.0E-6 47.31E-3 54.7E-3 62.175E-3 64.1E-3 86.313E-3 94.375E-3 130.313E-3 147.578E-3 321.484E-3

Non-MPI Time - (App_Time - MPI_Time) / P s C
216.745E-3 104.69E-3 39.25E-3 28.55E-3 22.65E-3 24.75E-3 23.063E-3 26.406E-3 25.391E-3 30.469E-3

MPI_WAIT WT* MPI_Wait / P s C
000.0E+0 9.563E-3 17.798E-3 15.402E-3 15.056E-3 28.368E-3 34.256E-3 61.952E-3 80.041E-3 243.134E-3

MPI Active Time - (MPI_Time - MPI_Wait) / P s C
55.0E-6 37.747E-3 36.902E-3 46.773E-3 49.044E-3 57.944E-3 60.119E-3 68.361E-3 67.537E-3 78.35E-3

Application Time - App_Time / M s C
216.8E-3 96.447E-6 59.613E-6 32.859E-6 31.42E-6 28.146E-6 29.761E-6 30.544E-6 33.711E-6 55.724E-6

MPI Time - MPI_Time / M s C
55.0E-6 30.019E-6 34.708E-6 22.519E-6 23.216E-6 21.873E-6 23.917E-6 25.397E-6 28.762E-6 50.9E-6

Non-MPI Time MsgCompute (App_Time - MPI_Time) / M s CO
216.745E-3 66.428E-6 24.905E-6 10.34E-6 8.204E-6 6.272E-6 5.845E-6 5.146E-6 4.948E-6 4.824E-6

MPI_WAIT - MPI_Wait / M s C
000.0E+0 6.068E-6 11.293E-6 5.578E-6 5.453E-6 7.189E-6 8.681E-6 12.074E-6 15.599E-6 38.495E-6

MPI Active Time - (MPI_Time - MPI_Wait) / M s C
55.0E-6 23.951E-6 23.415E-6 16.941E-6 17.763E-6 14.684E-6 15.235E-6 13.323E-6 13.163E-6 12.405E-6

Application Time - App_Time / (P * M) s C
216.8E-3 48.223E-6 14.903E-6 4.107E-6 1.964E-6 879.55E-9 465.018E-9 238.621E-9 131.682E-9 108.836E-9

MPI Time - MPI_Time / (P * M) s C
55.0E-6 15.01E-6 8.677E-6 2.815E-6 1.451E-6 683.544E-9 373.697E-9 198.415E-9 112.352E-9 99.414E-9

Non-MPI Time -
(App_Time - MPI_Time) / (P *

M) s C
216.745E-3 33.214E-6 6.226E-6 1.293E-6 512.722E-9 196.005E-9 91.321E-9 40.206E-9 19.33E-9 9.422E-9

MPI_WAIT - MPI_Wait / (P * M) s CV
000.0E+0 3.034E-6 2.823E-6 697.283E-9 340.829E-9 224.66E-9 135.644E-9 94.328E-9 60.935E-9 75.185E-9

MPI Active Time CPUMsgActive
(MPI_Time - MPI_Wait) / (P *

M) s CO
55.0E-6 11.976E-6 5.854E-6 2.118E-6 1.11E-6 458.884E-9 238.054E-9 104.087E-9 51.417E-9 24.229E-9

Analysis Views

Per CPU per Sent Message

Aggregate

Per CPU

Per Sent Message

 99

Busy Time - (App_Time * UCPU) / P s C
182.112E-3 133.304E-3 76.381E-3 74.077E-3 69.714E-3 88.198E-3 92.937E-3 113.729E-3 114.482E-3 213.57E-3

Idle Time - (App_Time * (1 - UCPU)) / P s C
34.688E-3 18.696E-3 17.569E-3 16.648E-3 17.036E-3 22.865E-3 24.5E-3 42.99E-3 58.486E-3 138.384E-3

Busy Time - (App_Time * UCPU) / M s C
182.112E-3 84.584E-6 48.465E-6 26.83E-6 25.25E-6 22.351E-6 23.552E-6 22.165E-6 22.312E-6 33.814E-6

Idle Time - (App_Time * (1 - UCPU)) / M s C
34.688E-3 11.863E-6 11.148E-6 6.03E-6 6.17E-6 5.794E-6 6.209E-6 8.378E-6 11.399E-6 21.91E-6

Busy Time - (App_Time * UCPU) / (P * M) s C
182.112E-3 42.292E-6 12.116E-6 3.354E-6 1.578E-6 698.472E-9 368.004E-9 173.164E-9 87.156E-9 66.043E-9

Idle Time -
(App_Time * (1 - UCPU)) / (P *

M)
s C

34.688E-3 5.931E-6 2.787E-6 753.714E-9 385.629E-9 181.077E-9 97.014E-9 65.457E-9 44.526E-9 42.793E-9

Switch Delay D0 L/BW + Lat s CO
10.281E-6 27.872E-6 27.872E-6 19.21E-6 19.21E-6 15.773E-6 15.773E-6 14.134E-6 14.134E-6 13.089E-6

Customers N P # B
1.0E+0 2.0E+0 4.0E+0 8.0E+0 16.0E+0 32.0E+0 64.0E+0 128.0E+0 256.0E+0 512.0E+0

Centers K P + 2 # B
3.0E+0 4.0E+0 6.0E+0 10.0E+0 18.0E+0 34.0E+0 66.0E+0 130.0E+0 258.0E+0 514.0E+0

Switch Delay D0 L/BW + Lat s B
000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0

CPU Service
Demand Dk

(MPI_Time - MPI_Wait) / (P *
M) = CPU Message Active s B

55.0E-6 11.976E-6 5.854E-6 2.118E-6 1.11E-6 458.884E-9 238.054E-9 104.087E-9 51.417E-9 24.229E-9

Computation
Delay DP+1

(App_Time - MPI_Time) / M
= MsgCompute s B

216.745E-3 66.428E-6 24.905E-6 10.34E-6 8.204E-6 6.272E-6 5.845E-6 5.146E-6 4.948E-6 4.824E-6

System
Response Time R - s R

216.8E-3 93.552E-6 57.83E-6 37.868E-6 39.031E-6 32.393E-6 33.439E-6 29.364E-6 28.98E-6 27.431E-6

Switch
Response Time R0 - s R

000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0

CPU Response
Time Rk - s R

55.0E-6 13.562E-6 8.231E-6 3.441E-6 1.927E-6 816.266E-9 431.168E-9 189.203E-9 93.873E-9 44.154E-9

Computation
Response Time RP+1 - s R

216.745E-3 66.428E-6 24.905E-6 10.34E-6 8.204E-6 6.272E-6 5.845E-6 5.146E-6 4.948E-6 4.824E-6

System
Throughput X - msg/s R

4.613E+0 21.378E+3 69.168E+3 211.259E+3 409.927E+3 987.878E+3 1.914E+6 4.359E+6 8.834E+6 18.665E+6

Switch
Utilization U0 - # R

000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0

CPU MPI
Utilization Uk - # R

253.69E-6 256.019E-3 404.887E-3 447.36E-3 455.095E-3 453.321E-3 455.615E-3 453.716E-3 454.198E-3 452.229E-3
Total
Computation
Utilization

UP+1 - # R
999.746E-3 1.42E+0 1.723E+0 2.185E+0 3.363E+0 6.196E+0 11.186E+0 22.433E+0 43.713E+0 90.041E+0

Network View

Model View

Utilization Views

Per Network Switch

Per CPU

Per Sent Message

Per CPU per Sent Message

Model Inputs

Model Outputs

 100

App Time -
Observed (Wall
Clock)

AT* App_Time / P s CI
216.8E-3 152.0E-3 93.95E-3 90.725E-3 86.75E-3 111.063E-3 117.438E-3 156.719E-3 172.969E-3 351.953E-3

App Time -
Model AT (R * M) / P s CR

216.8E-3 147.439E-3 91.14E-3 104.554E-3 107.765E-3 127.821E-3 131.951E-3 150.669E-3 148.696E-3 173.254E-3

Relative Error EAT (AT - AT*) / AT* % C
0.0% -3.0% -3.0% 15.2% 24.2% 15.1% 12.4% -3.9% -14.0% -50.8%

MPI Time -
Observed MT* MPI_Time / P s CI

55.0E-6 47.31E-3 54.7E-3 62.175E-3 64.1E-3 86.313E-3 94.375E-3 130.313E-3 147.578E-3 321.484E-3

MPI Time -
Model MT (Rk * M) + (R0 * M) / P s CR

55.0E-6 42.749E-3 51.89E-3 76.004E-3 85.115E-3 103.071E-3 108.889E-3 124.262E-3 123.306E-3 142.785E-3

Relative Error EMT (MT - MT*) / MT* % C
0.0% -9.6% -5.1% 22.2% 32.8% 19.4% 15.4% -4.6% -16.4% -55.6%

MPI_Wait Time -
Estimated WT* MPI_Wait / P s C

000.0E+0 9.563E-3 17.798E-3 15.402E-3 15.056E-3 28.368E-3 34.256E-3 61.952E-3 80.041E-3 243.134E-3

MPI_Wait Time -
Model WT (Rk - Dk) * M + (R0 * M) / P s CR

429.573E-15 5.002E-3 14.989E-3 29.231E-3 36.072E-3 45.127E-3 48.77E-3 55.902E-3 55.768E-3 64.435E-3

Relative Error EWT (WT - WT*) / WT* % C
#DIV/0! -47.7% -15.8% 89.8% 139.6% 59.1% 42.4% -9.8% -30.3% -73.5%

Throughput -
Observed X* M / AT* msg/s C

4.613E+0 20.737E+3 67.1E+3 243.461E+3 509.233E+3 1.137E+6 2.15E+6 4.191E+6 7.594E+6 9.188E+6

Throughput -
Model X - msg/s R

4.613E+0 21.378E+3 69.168E+3 211.259E+3 409.927E+3 987.878E+3 1.914E+6 4.359E+6 8.834E+6 18.665E+6

Relative Error EX (X - X*) / X* % C
0.0% 3.1% 3.1% -13.2% -19.5% -13.1% -11.0% 4.0% 16.3% 103.1%

CPU Utilization -
Observed U*

CPU - # A
840.0E-3 877.0E-3 813.0E-3 816.5E-3 803.625E-3 794.125E-3 791.375E-3 725.688E-3 661.867E-3 606.813E-3

CPU Utilization -
Model UCPU (UP + 1 / P) + Uk # C

1.0E+0 966.076E-3 835.541E-3 720.424E-3 665.274E-3 646.95E-3 630.395E-3 628.977E-3 624.953E-3 628.091E-3

Relative Error ECPU (U - U*) / U* % C
19.0% 10.2% 2.8% -11.8% -17.2% -18.5% -20.3% -13.3% -5.6% 3.5%

MPI Wait - MPI_Wait s G
000.0E+0 19.126E-3 71.193E-3 123.213E-3 240.903E-3 907.787E-3 2.192E+0 7.93E+0 20.49E+0 124.485E+0

MPI Active - MPI_Time - MPI_Wait s G
55.0E-6 75.494E-3 147.607E-3 374.187E-3 784.697E-3 1.854E+0 3.848E+0 8.75E+0 17.29E+0 40.115E+0

Computation - Non-MPI Time s G
216.745E-3 209.38E-3 157.0E-3 228.4E-3 362.4E-3 792.0E-3 1.476E+0 3.38E+0 6.5E+0 15.6E+0

Switch Delay - R0 * M s G
000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0 000.0E+0

MPI Contention - (Rk - Dk) * M * P s G
429.573E-15 10.003E-3 59.955E-3 233.847E-3 577.15E-3 1.444E+0 3.121E+0 7.155E+0 14.277E+0 32.99E+0

MPI Active - Dk * M * P s G
55.0E-6 75.494E-3 147.607E-3 374.187E-3 784.697E-3 1.854E+0 3.848E+0 8.75E+0 17.29E+0 40.115E+0

Compute Time - MsgCompute * M s G
216.745E-3 209.38E-3 157.0E-3 228.4E-3 362.4E-3 792.0E-3 1.476E+0 3.38E+0 6.5E+0 15.6E+0

Validation View

Graphical View

Modeled Component Time

Measured Component Time

MPI Active Time

CPU

MPI Wait Time

Throughput

Application (Wall Clock) Time

Types

A Auxillary calculation, done separately

B Values for building a model

C Calculated in this spreadsheet

G Ancillary calculation for grapic

I Input directly from measurement data

R Results from model

O Output for building a model

V Value for validating a model

Description

 101

Appendix C – Sample Component Time Bar Charts

Below, we show alternate views of the component times shown in Chapter V, Section

B for MCR. These views show the aggregate values of the components as a single bar on

the charts, with the outer bar representing the measured values from the target machine,

and the inner bar representing the modeled values from QNM. We have also generated

similar graphics for ALC and the Keck Cluster, as well as graphics plotting the behavior

of the various classes given a specific processor allocation.

Modeled vs. Measured Aggregate Component Times

000.0E+0

20.0E+0

40.0E+0

60.0E+0

80.0E+0

100.0E+0

120.0E+0

140.0E+0

160.0E+0

180.0E+0

200.0E+0

1 2 4 8 16 32 64 128 256 512

Number of Processors

Ti
m

e
(s

)

MPI Wait
MPI Active
Computation
Switch Delay
MPI Contention
MPI Active
Compute Time

Figure 55 – MCR Class S Component Times

 102

Modeled vs. Measured Aggregate Component Times

000.0E+0

20.0E+0

40.0E+0

60.0E+0

80.0E+0

100.0E+0

120.0E+0

140.0E+0

160.0E+0

180.0E+0

1 2 4 8 16 32 64 128 256 512

Number of Processors

Ti
m

e
(s

)

MPI Wait
MPI Active
Computation
Switch Delay
MPI Contention
MPI Active
Compute Time

Figure 56 – MCR Class W Component Times

Modeled vs. Measured Aggregate Component Times

000.0E+0

20.0E+0

40.0E+0

60.0E+0

80.0E+0

100.0E+0

120.0E+0

140.0E+0

160.0E+0

180.0E+0

1 2 4 8 16 32 64 128 256 512

Number of Processors

Ti
m

e
(s

)

MPI Wait
MPI Active
Computation
Switch Delay
MPI Contention
MPI Active
Compute Time

Figure 57 – MCR Class A Component Times

 103

Modeled vs. Measured Aggregate Component Times

000.0E+0

20.0E+0

40.0E+0

60.0E+0

80.0E+0

100.0E+0

120.0E+0

140.0E+0

160.0E+0

180.0E+0

1 2 4 8 16 32 64 128 256 512

Number of Processors

Ti
m

e
(s

)

MPI Wait
MPI Active
Computation
Switch Delay
MPI Contention
MPI Active
Compute Time

Figure 58 – MCR Class B Component Times

Modeled vs. Measured Aggregate Component Times

000.0E+0

500.0E+0

1.0E+3

1.5E+3

2.0E+3

2.5E+3

3.0E+3

3.5E+3

4.0E+3

4.5E+3

1 2 4 8 16 32 64 128 256 512

Number of Processors

Ti
m

e
(s

)

MPI Wait
MPI Active
Computation
Switch Delay
MPI Contention
MPI Active
Compute Time

Figure 59 – MCR Class C Component Times

 104

Modeled vs. Measured Aggregate Component Times

000.0E+0

20.0E+3

40.0E+3

60.0E+3

80.0E+3

100.0E+3

120.0E+3

140.0E+3

160.0E+3

16 32 64 128 256 512

Number of Processors

Ti
m

e
(s

)

MPI Wait
MPI Active
Computation
Switch Delay
MPI Contention
MPI Active
Compute Time

Figure 60 – MCR Class D Component Times

 105

VIII – Bibliography

[ASC, 2004] ASC Linux Cluster (ALC). 25 Oct. 2004. Lawrence Livermore

National Laboratory. 5 Feb. 2006.
<http://www.llnl.gov/linux/alc/>.

[Alexandrov, 1995] Alexandrov, Albert, et al. “LogGP: Incorporating Long Messages

into the LogP Model – One step closer towards a realistic model
for parallel computation.” ACM 7th Annual Symposium on
Parallel Algorithms and Architectures. July 1995. Santa Barbara,
CA: U. of California at Santa Barbara, 1995.
<http://citeseer.ist.psu.edu/cache/papers/cs/2693/ftp:zSzzSzftp.cs.u
csb.eduzSzpubzSzpaperszSzschauserzSz95-
spaa.pdf/alexandrov95loggp.pdf>.

[Bailey, 1994] Bailey, D., et al. “The NAS Parallel Benchmarks.” RNR Technical

Report. NASA Ames Research Center, Mar. 1994.

[Bailey, 1995] Bailey, D., et al. “The NAS Parallel Benchmarks.” Report. NASA

Ames Research Center, Dec. 1995.

[Balsa, 1997] Balsa, André. Linux Benchmarking – Concepts. “3. FPU tests:

Whetstone and Sons, Ltd.” 21 Sept. 1997. The Linux Gazette. 26
Nov. 2004.
<http://www.tux.org/~balsa/linux/benchmarking/articles/html/Arti
cle1d-3.html>.

[Beowulf, 2005] Beowulf.org: Overview. “What Makes a Cluster a Beowulf?” 2005.

Beowulf.org. 30 Mar. 2006.
<http://www.beowulf.org/overview/index.html>.

[Bramer, 2004] Bramer, Brian. System Benchmarks. DeMontfort University, UK. 26

Nov. 2004
<http://www.cse.dmu.ac.uk/~bb/Teaching/ComputerSystems/Syste
mBenchmarks/BenchMarks.html>.

[Culler, 1999] Culler, David E, Jaswinder Pal Singh, and Anoop Gupta. Parallel

Computer Architecture: A Hardware/Software Approach. San
Francisco: Morgan Kaufmann Publishers, 1999.

[Culler, 1993] Culler, David, et al. “LogP: Towards a Realistic Model of Parallel

Computation.” ACM 4th SIGPLAN symposium on Principles and
Practice of Parallel Computing. July 1993. Berkeley, CA: U of
California at Berkeley, 1993.

 106

<http://citeseer.ist.psu.edu/cache/papers/cs/979/http:zSzzSznow.cs.
berkeley.eduzSz~demmelzSzcs267zSzlogp.pdf/culler93logp.pdf>.

 [Dongara, 2004a] Dongara, Jack. Netlib Repository at UTK and ORNL. “Frequently

Asked Questions on the Linpack Benchmark and Top500.” 28
Oct. 2004. AT&T Bell Laboratories, et al. 26 Nov. 2004
<http://www.netlib.org/utk/people/JackDongarra/faq-
linpack.html#_Toc27885709>.

 [Dongara, 2004b] Dongara, Jack. Netlib Repository at UTK and ORNL. “Linpack.” 28

Oct. 2004. AT&T Bell Laboratories, et al. 26 Nov. 2004
<http://www.netlib.org/linpack/>.

[Faulkner, 2005] Faulkner, Sheila A. "Simple MPI Performance Measurements III."

Paper. Lawrence Livermore National Laboratory, 2005.

[Frank, 1997] Frank, Matthew I., Anant Agarwal, and Mary K. Vernon. “LoPC:

Modeling Contention in Parallel Algorithms.” ACM 6th SIGPLAN
Symposium on Principles and Practice of Parallel Computing.
June 1997. Las Vegas, NV, 1997.
<http://citeseer.ist.psu.edu/cache/papers/cs/3304/ftp:zSzzSzftp.cag.
lcs.mit.eduzSzmfrankzSzppopp97.pdf/frank97lopc.pdf>.

[Grama, 2003] Grama, Ananth, et al. Introduction to Parallel Computing. 2nd ed.

Harlow, England: Addison-Wesley, 2003.

[Ipek, 2005] Ipek, Engin, et al. An Approach to Performance Prediction for Parallel

Applications. 16 Jan. 2007. Euro-Par 2005. 30 Aug. – 2 Sep.
2005. Lisbon, Portugal.
<http://www.springerlink.com/content/ay63wtdah19m036g/?p=6a
2ac886097a4713934b378d29a02e93&pi=23>.

[Ipek, 2006] Ipek, Engin, et al. Efficiently Exploring Architectural Design Spaces

via Predictive Modeling. ASPLOS 06. 21 – 25 Oct. 2006. San
Jose, CA.

[Kanellos, 2004] Kanellos, Michael. “Intel kills plans for 4GHz Pentium.” Tech News

on ZDNet. 14 Oct. 2004. 18 Dec. 2006.
<http://news.zdnet.com/2100-9584_22-5409816.html>.

[Keck, 2004a] Keck Cluster [USF-CS]. 27 Jul 2004. U. of San Francisco. 8 Aug.

2005. <http://kc.cs.usfca.edu/index.shtml>.

[Keck, 2004b] Keck Cluster [USF-CS]. 25 Jun 2004. U. of San Francisco. 8 Aug.

2005. <http://kc.cs.usfca.edu/software.shtml>.

 107

[Lazowska, 1984] Lazowska, Edward D., et al. Quantitative System Performance:
Computer System Analysis Using Queueing Network Models.
Englewood Cliffs, NJ: Prentice-Hall, 1984.
<http://www.cs.washington.edu/homes/lazowska/qsp/>.

[Lee, 2006] Lee, Benjamin, and David Brooks. Accurate and Efficient Regression

Modeling For Microarchitectural Performance and Power
Prediction. ASPLOS 06. 21 – 25 Oct. 2006. San Jose, CA.

[Linux, 2006] Linux Basics. 9 Feb. 2006. Lawrence Livermore National

Laboratory. 23 Mar. 2006.
<http://www.llnl.gov/linux/linux_basics.html>.

[LCOCF, 2006] LC Open Computing Facility – OCF. 28 Feb. 2006. Lawrence

Livermore National Laboratory. 23 Mar. 2006.
<http://www.llnl.gov/computing/hpc/resources/OCF_resources.ht
ml >.

[M&IC, 2002] M&IC Capability Cluster (MCR). 29 Aug. 2002. Lawrence

Livermore National Laboratory. 12 Aug. 2005.
<http://www.llnl.gov/linux/mcr/background/mcr_background.html
#sec212>.

[M&IC, 2004] M&IC Capability Cluster (MCR). 6 Aug 2004. Lawrence Livermore

National Laboratory. 8 Aug. 2005.
<http://www.llnl.gov/linux/mcr/mcr.html>.

[Mauer, 2004] Mauer, Hans, et al. Top 500 Supercomputer Sites. 2004. Top 500

Supercomputer Sites. 26 Nov. 2004
<http://www.top500.org/lists/linpack.php>.

[MpiP, 2005] mpiP: Lightweight, Scalable MPI Profiling. 29 Apr. 2005. Lawrence

Livermore National Laboratory. 8 Aug. 2005.
<http://www.llnl.gov/CASC/mpip/>.

[NAS-PB, 2004] The NAS Parallel Benchmarks. 13 Oct. 2004. National Aeronautics

and Space Administration Advanced Supercomputing Division. 8
Aug. 2005. <http://www.nas.nasa.gov/Software/NPB/>.

[Purple, 2001] The ASCI Purple Benchmarks. 26 Nov. 2001. Lawrence Livermore

National Laboratory. 13 Nov. 2006.
<http://www.llnl.gov/asci/purple/benchmarks/>.

 108

[Snavely, 2001] Snavely, Allen, Laura Carrington, and Nicole Wolter. Modeling
Application Performance by Convolving Machine Signatures with
Application Profiles. IEEE Workshop on Workload
Characterization. Dec. 2001. Austin, TX. 16 Jan. 2007.
<http://www.sdsc.edu/~allans/micro.pdf>.

[SPEC, 2006] SPEC CPU2000. 14 Nov. 2006. Standard Performance Evaluation

Corporation. 24 Nov. 2006. <http://www.spec.org/cpu2000/>.

[Tvrdik, 1999] Tvrdik, Pavel. CS838: Topics in Parallel Computing. “Section \#2:

PRAM Models.” 23 Jan. 1999. University of Wisconsin –
Madison. 10 Dec. 2004.
<http://www.cs.wisc.edu/~tvrdik/2/html/Section2.html>.

[Weboped, 2004] Dhrystone. “What is Dhrystone? – A Word Definition From the

Webopedia Computer Dictionary.” Webopedia.com. 26 Nov.
2004. <http://www.webopedia.com/TERM/D/Dhrystone.html>.

 109

Index

A

ALC · iii, 25, 26, 40, 42, 43, 51, 52, 53, 54, 55, 62, 63,
64, 65, 67, 69, 74, 75, 78, 79, 80, 82, 83, 86, 93,
94, 95, 96, 101

Application Modeling · See
Models:System:Application

B

Bandwidth · iii, 19, 22, 24, 25, 26, 29, 30, 34, 37, 38,
39, 40, 41, 43, 86, 89, 90, 91, 92, 93, 94, 95

Benchmarks · 12, 13, 14, 15, 16, 17, 26, 32, 34, 40, 45,
79, 87, 89, 90, 93
ASCI Purple · 15
Dhrystone · 13
LBW · 30, 38, 39, 40, 89, 90, 93
Linpack · 14
NAS Parallel · iii, 10, 15, 26, 27, 28, 29, 32, 33, 34,

35, 36, 37, 45, 79, 86, 90, 93, 96
BT · 17, 86
CG · iii, 10, 16, 17, 26, 34, 35, 36, 37, 45, 72,

73, 74, 75, 76, 77, 86, 90, 93
EP · 16, 17
FT · 16, 17, 86
IS · 16, 17
LU · 16, 17
MG · 16, 17
SP · 16, 17

Whetstone · 13
BT · See Benchmarks:NAS Parallel:BT

C

CG · See Benchmarks:NAS Parallel:CG
CPU Allocation · 68, 69
CPU Utilization · 67, 68, 69

D

Dhrystone · See Benchmarks:Dhrystone

E

Electro-mechanical · See
Models:Programming:Electro-mechanical

EP · See Benchmarks:NAS Parallel:EP

F

FT · See Benchmarks:NAS Parallel:FT

H

Hard Programming · See
Models:Programming:Electro-mechanical

I

inMaker · 28, 29, 32
IS · See Benchmarks:NAS Parallel:IS

K

Keck Cluster · iii, 24, 39, 40, 56, 57, 58, 59, 60, 64,
65, 67, 76, 77, 78, 79, 80, 84, 85, 86, 89, 90, 96,
101

L

Latency · iii, 22, 24, 25, 26, 29, 30, 34, 37, 38, 39, 40,
42, 43, 86, 89, 90, 92, 93, 94, 95

LBW · See Benchmarks:LBW
Linpack · See Benchmarks:Linpack
LogGP · See Models:System:LogGP
LogP · See Models:System:LogP
LoPC · See Models:System:LoPC
LU · See Benchmarks:NAS Parallel:LU

M

MCR · iii, 25, 26, 40, 41, 42, 46, 47, 48, 49, 50, 61,
62, 63, 64, 65, 67, 68, 71, 72, 73, 78, 79, 80, 81,
86, 90, 91, 92, 93, 96, 101, 102, 103, 104

Message Passing · See
Models:Programming:Textual:Parallal:Message
Passing

MG · See Benchmarks:NAS Parallel:MG
Models · iii, iv, 1, 2, 3, 4, 10, 12, 17, 18, 19, 20, 21,

22, 27, 28, 29, 30, 31, 33, 34, 37, 39, 45, 61, 62,
64, 70, 71, 74, 76, 78, 80, 81, 82, 83, 84, 85, 86,
87, 88, 90, 93, 96
Programming · 6, 29

Electro-mechanical · 6
Textual · 7, 8

Parallel · 8, 9, 10, 11

 110

Message Passing · 9, 11, 12, 30
Remote Procedure Calling · 11
Shared Memory · 11, 15, 17, 18

Serial · 8
System

Application · 20
LogGP · 19
LogP · 18, 19
LoPC · 19
PRAM · 18
QNM · iii, iv, 1, 2, 3, 4, 20, 21, 22, 28, 29, 32,

33, 45, 61, 62, 63, 64, 65, 70, 71, 74, 76, 78,
86, 87, 88, 96, 101

RAM · 18, 24
MPI · 9, 10, 15, 17, 21, 22, 24, 25, 26, 27, 29, 30, 32,

33, 34, 38, 40, 61, 64, 68, 69, 71, 74, 76, 78, 79,
87, 88, 89, 91

mpiP · 27, 28, 29, 32, 39, 40, 41, 42, 43, 71, 92, 93,
95, 96

mpiPfilter Application · 32, 96

N

NAS · See Benchmarks:NAS Parallel
NPB · See Benchmarks:NAS Parallel
NPB Spreadsheet · 28, 29, 32, 33, 96

O

OpenMP · See
Models:Programming:Textual:Parallel:Shared
Memory

P

Parallel Programming · See
Models:Programming:Textual:Parallel

Parameterization · 2, 18, 19, 20, 21, 29, 33, 35, 36, 70,
79, 88

PRAM · See Models:System:PRAM
Problem Size · 5, 14, 17, 35, 45, 47, 79
Programming Models · See Models:Programming
pseudo-parallelism · See

Models:Programming:Textual:Parallel

Q

QNM · See Models:System:QNM
QNM Solver · 28, 29
Queueing Network Model · See Models:System:QNM

R

RAM · See Models:System:RAM
Regimes · 66, 67

Regionalization · 47, 52, 57, 66, 67, 70
Regionalization · See Regimes:Regionalization
Relative Error · 61, 62, 63, 64, 65
Remote Procedure Calling · See

Models:Programming:Textual:Parallel:Remote
Procedure Calling

Runtimes · 3, 36, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 62, 63, 64, 66, 68, 69, 70, 88

S

Scaling · iii, 1, 5, 15, 24, 65, 88
Strong · 5
Weak · 6

Shared Memory · See
Models:Programming:Textual:Parallel:Shared
Memory

SP · See Benchmarks:NAS Parallel:SP
Strong Scaling · See Scaling:Strong

T

Textual Programming · See
Models:Programming:Textual

Time to Solution · iii, iv, 5, 6, 12, 34, 35, 37, 46, 47,
51, 52, 56, 57, 65

Trending · 19, 36, 45, 66, 67, 68, 69, 70, 71, 72, 73,
74, 75, 76, 77, 78, 79

True Parallelism · See
Models:Programming:Textual:Parallel

W

Weak Scaling · See Scaling:Weak
Whetstone · See Benchmarks:Whetstone
Work Metric · 35, 36, 37, 47, 79

